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We compare the electronic temperatures and the population inversion both below and above the
lasing threshold in three quantum-cascade la$®GLs operating at 2.8 THz, 3.2 THz, and

3.8 THz using microprobe band-to-band photoluminescence. In the lasing range, while the
ground-state temperature remains close to the lattice(@hd&—100 K), the upper radiative state
heats up to~200 K. From the measured thermal resistance and the power dependence of the
ground-state electronic temperature, we get a value of the electron-lattice energy relaxation rate
comparable with that typical of midinfrared QCLs. ZD05 American Institute of Physics
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Quantum-cascade laser€QCLs) promise mW-level tributions may arise from the detailed balance between the
continuous-wavecw) power in the rangé1—-10 TH2 for  injection and the energy relaxation rates, i.e., inter- and in-
potential applications in spectroscopy, imaging, and sensingrasubband electron-electrofe-e), electron-LO phonon,
Following the first report, based on chirped superlattices, electron-impurity, and interface roughness scattering. At
different schemes have been proposed for the gain mediuglectronic sheet densities10'! cm™, the e-e scattering is
design, namely, the resonant-phorfon,the bound to fast enough to create Boltzmann-type subband distributions
continuum® and the interlaced photon-phorfodesigns. In  characterized by electronic temperatufgghat may exceed
this letter, we focus on the resonant-phonon scheme, baseie lattice one(T,) at injected currents close to the laser
on resonant tunneling and fast electron-longitudinal opticathreshold**® Subband thermalization and the related con-
(LO) phonon scattering to selectively depopulate the lowekept of subband temperature is questionable at densities
radiative state. QCLs based on the above scheme and fabrz10° cm2,81° but it still holds at the densities used in THz
cated with high-confinement low-loss metal waveguidesQCLs (3—5x 10 cm?).2
have been demonstrated in the range of 2.1 THz-3.8 THz, |n THz QCLs, the photon energy is smaller than the LO
and have shown the highest operating temperature in botphonon energyE, , and the electron-LO phonon scattering
pulsed (137 K) and cw operation(97 K).2> While early  between radiative subbands is energetically forbidden at very
resonant-phonon QCLs displayed relatively high thresholdow electronic temperaturéd,). However, the strond, de-
current densities because of parasitic electronic transpogendence of the nonradiative relaxation ragé ,exd (E
channelg, significant improvements have been obtained us-—E, ,)/kgT,] significantly reduces the gain and increases the
ing a design aimed at decreasing the parasitic coupling behreshold current density at high. We show here that op-
tween the injector states and the initial state of the phononﬁmizing the quantum design may improve the electron-
assisted transition in the next moddle. lattice coupling and hence the electrical and optical perfor-

In this work, we report on the measurement of electroniomance of THz QCLS.
and lattice temperatures and the relative subband populations We have compared three QCLs that operate at 2.8 THz
in resonant-phonon THz QCLs. Detailed knowledge on thE(Samg|e & 3.2 THz (Sample b, and 3.8 THz (Sample
nature of the electronic distribution in THz QCLs is of para- ¢).®>!® The conduction-and valence-band structures for a
mount importance as a guide for the design of improvedingle period of Sample a are shown in Fig&)land 1b);
structures aimed at high-temperature operation. The exishe band structures of Samples b and ¢ are similar. Our ex-
tence of nonequilibrium electronic distributions in midinfra- perimental method is based on the microprobe band-to-band
red (mid-IR) QCLs has been predicted theoreticiif and  photoluminescencéL)” that proved successful for the in-
assessed experimentally'®In THz QCLs, hot-electron dis- vestigation of mid-IR QCL&>**®Wwe kept the laser-

induced electron heating below a negligible le¢eB K) by

¥Electronic mail: vitiello@fisica.uniba.it USin.g an inCid?m Optic?-l power of9 uW. Thus, the elec-_
PElectronic mail: scamarcio@fisica.uniba.it tronic distribution remains unperturbed and the laser excita-
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FIG. 1. Conductior{a) and valenceb) band structures of Sample a calcu- Energy (eV)

lated with a voltage drop of 65 mV per stage using a self-consistent method
pased on the iterative_solution of the $chr6dinger a_nd‘Poiss‘on coupled €AURiG. 3. Dashed line: PL spectrum Bt=1.5 W. Solid line: Calculated PL
it'n(};];i?n%(ﬁ’afﬁggUCtt'r?g'b?gfe?ﬁsﬁfiéi#;;:ésBe%:g;gSrévéth ti:e I%f\t-m:rs;components peaked at the theoretical energies of relgvarit transition
56/81/25/67/39160/36/93. The underlined layer is doped 1.9 \[;Ifﬁ ngvﬁtﬁ”gtlﬁf mzx'l%vnﬁizrgzynﬁfj °$ﬁ:°;‘l ;ﬁg’ﬁ;g; ;?Jg”fsz'zz
x 10 cm3 that corresponds to a sheet density of B0'° cm2. The en- tial d functi Q-(E-E- )/k'Tj
ergy levels are labeled using increasing integers starting from the groungxponen 1a decay funclionex -/ keTel-
state either in the conduction or valence baridsCurrent density vs volt-
age characteristic of Sample a measured at the heat sink temperature §5n and valence subbands by comparison with the calculated
50 K. The shaded area shows the lasing region. The right axis shows th&nergiesE-
electrical power(P). jke . .

The analysis of the PL line shape is based on the follow-

ing expression:
tion only provides holes for band-to-band radiative

recombinatiorf’ The photoexcited holes quickly relax ° 2 . 5

(~200 f9 to one of the valence subbands 1Hyg. 1(b)] and IpL(E) = J;l k%AjkEikK'»[’”’r”k>| L(E), 1)
can probe the electron population in the conduction subbands

1-5[Fig. 1(a)]. where A =n;-py, n;, andp, are the populations of the con-

Figure 2 shows a set of PL spectra for different values ofduction and valence subbands. The téuy] ) is the over-
the electrical powefP). We focus on Sample a, as i& lap integral of the envelope functions. The line shape func-
values are sufficiently low to reach the lasing thresholdtion L(E) is obtained joining a Lorentzian with a
(Py~1.5 W, Jy,~400 A/cn?) well below the maximum Phenomenological broadening/2=3.2 meV on the low-
heat dissipation rate of our microcryostat. Similar results ar€nergy side, and an exponential deea@x -E/kgT;] on the
found for Samples b and c. Each spectrum shows a maiRigh-energy sideT} is the electronic temperature of the con-
peak that corresponds to the transition-2 between the ductionjth subband. FoP=1 W, an excellent reproduction
injector ground stat¢level 1 of Fig. 1a)] and the valence ©f the PL is obtained considering the-k transitions that
subband Jsee Fig. b)]. The energyE, of this peak red- have an overlap integrat0.2 and leavindT, Ay, as fitting
shifts with P due to the Joule heatin@nset, Fig. 2. To ease Parameters. Figure 3 illustrates the application of this rr211ethod
the comparison, each spectrum is plotted as a function of thfr the PL spectrum of Sample a measurecPatl.5 W-
energy difference\E with respect to the correspondig, ~ However, forP<1 W, the results becomes unclear, since the
value. The structure on the high-energy tail of the peak number of allowed transitions considerably increases due to

— 2 is due to the allowed transitiojs—k between conduc- the lower localization of the wave functig5 and the oc-
currence of resonances between subbands originating in ad-

jacent periods. Therefore, in the range<1 W we have re-
stricted our analysis to the main PL band and estimated only
the ground-state electronic temperature.

The fitting parameterd’, are plotted in Fig. é4) as a
function of P together withT,, extracted by comparing £
against a calibration curve obtained by probing the device
with zero injected-current while varying the heat sink
temperaturé? We found that the electronic temperatures of
the subband$=1-4 arenearly equal and increase linearly
with P with a slopeR,=28.0 K/W, slightlgl larger than the
) thermal resistanc&k=dT, /dP=25.3 K/W?* On the other
0%, Mo ow hand, the temperature of the upper laser leélreaches
0 002 004 008 008 010 ~200 K in the range oP=1 W-2.2 W, i.e., it is higher by

AE = (E-E;) (V) ~100 K t'hanTL. The existence pf differences as high as
25-40% in the subband electronic temperatures is predicted
FIG. 2. Representative PL spectra of samaeat different electrical pow- by Monte Carlo simulations both in mid-1R and THZ3
ers, each plotted as a function of the energy differehBewith respect to  QCLSs. In our case, we tentatively ascribe the large difference
e e v e S s o ovoeton o o betWeer3 and & to the reduced effcency ofitersubband
bet?Neen levels in the conductizh) and valencek) b%mds[see Figs. (a) e-e scattering (_:hannels coup!lng electrons in II:FES andJ
and 1b)]. Inset: Main peak1— 2) energyEs as a function of the electrical =1,2 levels, with respect to intrasubbaee processes, as

power. The line is a guide for the eyes. calculated for prototype THz QCLs structuréOne impor-
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those of mid-IR QCLY7:'=4 ps?)."* However, the perfor-
mance is limited by the hot electron distribution in the upper
radiative state.
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