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A density matrix approach is used in combination with a tight-binding model to describe electron
transport in terahertz quantum cascade lasers and is incorporated into a Monte Carlo simulation.
Scattering events, including LO-phonon, electron-electron, and ionized impurity scattering, are
treated semiclassically but contribute to dephasing scattering. In addition, a phenomenological “pure
dephasing rate” was introduced to take into account dephasing caused by interface roughness
scattering. This model was used to investigate the influence of dephasing on electron transport
through a barrier. Additionally, current densities, populations and electron temperatures were
calculated for a simple three-level structure and a five-level structure that achieved lasing at
3.2 THz, and the results were compared to a semiclassical simulation. We find that the inclusion of
coherent transport and dephasing in the calculations is essential when transport is dominated by
transitions between weakly coupled states. © 2005 American Institute of Physics.
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I. INTRODUCTION

In quantum cascade lasers (QCLs), resonant tunneling is
a critical transport mechanism, and as such it is the subject of
active theoretical and experimental research.' However, al-
though a qualitative understanding is straightforward, it is
not always clear how to quantify the exact effect of coherent
and incoherent transport. The effects of resonant tunneling
and dephasing are most important when describing the trans-
port between two weakly coupled energy states, i.e., tunnel-
ing through a thick barrier such as an injector barrier. In the
calculation and analysis of QCLs, the localization of wave-
functions due to dephasing scattering is often disregarded,
which can lead to unphysical results and limit the usefulness
of the simulation.” Therefore, it is necessary to include a
model for sequential tunneling to analyze the electron trans-
port in QCLs over a broad bias range. Although simulations
using nonequilibrium Green (NEG) function analysis5 have
shown some promising results recently, the complexity and
computational burden of this method limit its utility in ob-
taining an intuitive picture of electron transport. On the other
hand, the density matrix formalism provides an easily acces-
sible description of coherent electron transport, and is widely
used to model optical and electronic transitions.® To investi-
gate the importance of coherent transport in THz QCLs, we
used Monte Carlo (MC) simulations with a semiclassical ap-
proach and with a density matrix (MC-DM) approach to
model two experimentally tested devices, a three-level
superlattice7 and a 3.2 THz QCL (Ref. 8) that has five levels
in each module participating in the transport.

The importance of coherent transport in multiple quan-
tum well (MQW) structures can be appreciated by consider-
ing a simple superlattice as shown in Fig. 1. In this simple
structure, only two energy levels in each well, 1 and 2, par-
ticipate in the transport process as electrons move from the
left to the right under an applied electric field. Figure 1(a)
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illustrates the scheme that is described by the semiclassical
model, in which the entire superlattice is treated as a single
quantum mechanical system with a well-defined Hamil-
tonian. All the subband energy levels are eigenstates (which
are stationary by definition) of this Hamiltonian. The trans-
port process is the collective effect of intersubband scattering
between the various subbands (eigenstates) involved, and
can be calculated using the Fermi’s golden rule approxima-
tion. This is essentially a rate-equation approach and there is
no coherent oscillatory time evolution among the subband
electron populations. In this picture, the electron wavefunc-
tions always correspond to the stationary eigenstates, and
scattering transports an electron from one eigenstate to an-
other. Under resonant bias conditions, the ground state 1’ in
one well is aligned with the excited level 2 of the adjacent
well. These two levels form a spatially extended doublet with
the “symmetric” wavefunction |S) as the lower-energy state,
and the “antisymmetric” wavefunction |A) as the higher-
energy state [Fig. 1(a)]. The energy separation of the doublet
is the anticrossing gap A;/,. In this semiclassical picture, the
transport through an energy barrier is effectively instanta-
neous, as both |S) and |A) are spatially extended across the
barrier, and consequently the barrier causes no “resistance”
to the electron transport under the resonant bias. The only
“bottleneck”™ of this transport process is the energy-relaxing
(inelastic) intersubband scattering from the doublet |S) and
|A) into 1, or equivalently (in the case of a superlattice) into
the doublet |S”) and |A”) formed by 1 and 2" of the following
well (not shown in the figure). As a result, the current density
under this resonant bias is independent of the barrier thick-
ness, which is only valid in the absence of dephasing, and is
thereby unphysical for real devices.

In contrast, in Fig. 1(b) localized basis states are used
and electron transport through the barrier takes place via a
coherent time evolution of these states, i.e., it takes the elec-
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FIG. 1. Difference between semiclassical and coherent picture of coupled
quantum wells. (a) Semiclassical picture. The wavefunctions represent
eigenstates of the Hamiltonian and are delocalized at resonance. Transport
through the barrier happens as soon as electrons enter levels |S) or |A). (b)
Coherent picture. The wave packet is initially localized in the left well.
Electrons are transported through the barrier with Rabi oscillations at fre-
quency () due to the interaction between 1’ and 2.

trons a finite time to get from one well to the next. In this
scheme, at an initial time, the electron wave packet resides at
the bottom of the left well in state 1’. This wave packet can
be composed as a coherent superposition of level |S) and
level |A> As time evolves, this wave packet oscillates across
the middle barrier at the Rabi oscillation frequency A/,/#.
In the absence of pure dephasing, this oscillation will be
damped only by the intersubband scattering as the wave
packet is depleted each time it is in the right well where
intersubband scattering takes place. The main bottleneck of
the electron transport is again the intersubband scattering
lifetime, as in the scenario of Fig. 1(a), even though a finite
transport time (half of the Rabi oscillation period) across the
barrier increases the dwell time in each well and conse-
quently reduces the current density somewhat. Note that, in
the absence of dephasing, the wave packet spends half of its
time in either well, so that the time-average of the population
distribution is in agreement with the picture described in Fig.
I(a). The most significant difference between the two
schemes, however, becomes clear in the presence of dephas-
ing scattering that may be caused by various elastic intrasub-
band scattering mechanisms, such as interface roughness and
electron-impurity scattering. With dephasing scattering, the
Rabi oscillation can be damped even in the absence of in-
elastic intersubband scattering. One may envision that the
dephasing scattering can be so strong that the Rabi oscilla-
tion is overdamped, i.e., the time evolution of the wave
packet from the left to the right well is no longer oscillatory
(which is a direct analogy to an overdamped harmonic oscil-
lator). In this strong dephasing limit, the bottleneck of the
current transport is the tunneling barrier, which is the sce-
nario discussed by Luryi.9 Now the time-averaged popula-
tion distribution will be different in both wells, as electrons
pile up behind the barrier, and the simple semiclassical pic-
ture of Fig. 1(a) is no longer a good approximation.

So far, most of the analysis of transport processes in
QCLs has been based on the semiclassical model described
in Fig. 1(a).*'%2 This is mainly because QCLs were first
developed at midinfrared frequencies, where the photon en-
ergy iw>100 meV. Consequently, the injection barriers are
relatively thin, which results in a large anticrossing gap of
A,~10 meV. Dephasing due to intrasubband scattering
does not cause a significant damping to the fast 1’ <2 oscil-
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lation, and the main bottleneck of the transport is due to
intersubband scattering. In fact, this Rabi oscillation at
2.5 THz (~10 meV) across the injection barrier has been
experimentally observed in a midinfrared QCL by using a
time-resolved pump-and-probe method.? In THz QCLs, how-
ever, the photon energy is much smaller, Zw~ 10—20 meV.
Therefore, the injection barrier must be made thicker with a
smaller anticrossing gap of A;/,~1 meV in order to main-
tain a high injection selectivity. In comparison, the dephasing
rate, which can be estimated from the measured spontaneous
emission linewidth, is relatively higher (~4—6 meV in our
THz QCLs based on resonant LO-phonon scattering).13 Asa
result of this much stronger dephasing relative to the injec-
tion anticrossing gap, we have found that transport analysis
based on the semiclassical model is quite inadequate. For
example, the measured maximum current densities at reso-
nance are observed to be very sensitive to the thickness of
the injection barriers. Also, simulations based on the semi-
classical model tend to overestimate the current densities and
material gains in our laser devices,*'” and even predict sub-
stantial levels of gain in experimental devices that did not
achieve lasing. It is this significant discrepancy between
simulation results based on the semiclassical model and ex-
perimental results that motivates us to pursue the investiga-
tion described in this paper: the importance of the coherent
aspect of the transport process, or equivalently, the quantita-
tive effect of dephasing scattering on the transport process
involving subband levels at resonance.

In the following sections, we will briefly introduce the
density matrix formalism and its implementation in the MC
simulation. We will then compare the semiclassical and den-
sity matrix approaches by investigating electron transport
through a barrier in resonant and nonresonant bias condi-
tions, and use the density matrix MC simulation to investi-
gate a simple three-level structure and a five-level QCL that
achieved lasing at 3.2 THz.

Il. THEORETICAL APPROACH

To describe the time evolution and phase coherence of a
large number of particles, we can choose from several differ-
ent approaches. The most straightforward method would be
to use a Schrodinger picture, where we keep track of the full
wavefunction of every particle. From these wavefunctions
we can then easily find the relevant macroscopic quantities,
like current, population density or optical gain by summing
over the contributions from each particle. However, due to
the inherently statistical nature of these quantities, much of
the information contained in those wavefunctions is averaged
out and turns out not to be relevant for the macroscopic
picture.

Another, more efficient approach is the density matrix
formalism,14 which describes the statistical distribution of
quantum states in a system. This method allows us to treat
the properties of a large ensemble of electrons (particles)
statistically, without worrying about the exact details of the
individual electrons’ wavefunctions. A generic particle from
this ensemble can be represented by a wavefunction -
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|’/’>=Eci|¢i>’ (1)

where ¢,; are the basis wavefunctions belonging to the
Hamiltonian H, of the unperturbed system, and

ci={d{). (2)
We can then define the density operator
p() = [N 1) 3)

which takes the form of a projection operator. The density
operator can be interpreted as a description of the probability
distribution in a system. For an ensemble of particles, the
density matrix elements are defined as the ensemble aver-
ages:

pmn = <CI‘LC:1> N (4)

The diagonal elements p;; describe the probability of finding
the system in state |i) and are proportional to the population
density of that state. The off-diagonal elements p;; are related
to the polarization between states i and j and describe the
degree of coherent interaction. Consistent with its interpreta-
tion as “probability matrix,” it can be shown that

N
Tr(p) = E pi=1, (5)

which reflects that the total population density is conserved.
Another important property is that the magnitude of each
off-diagonal element is smaller than or equal to the geomet-
ric mean of the corresponding diagonal elements (Schwartz
inequality):

piiPij = |pij|2~ (6)
Physically, the equality corresponds to a “pure state” de-
scribed by a single wavefunction, such as the one described
by Egs. (1)—(3). Note that this pure state needs not represent
just a single electron, but can instead also be used to describe
time evolution of an ensemble of particles. On the other
hand, the inequality in Eq. (6) refers to a “mixed state,”

which can in general be broken up into simpler constituent
pure states:

Pmixed = E |l//i><l//i|- (7)

A mixed state cannot be described with a single wavefunc-
tion, and represents an ensemble consisting of independently
evolving pure states, i.e., a mixed state is in fact an ensemble
of ensembles. In essence, a mixed state reflects the interac-
tion between a subsystem that is characterized by a well-
defined Hamiltonian H, and the rest of the environment,
whose effects are too complex to be dealt with from first
principles. The effect of dephasing can then be considered as
the scrambling of the phase coherence of some electrons in
one of the constituent pure state ensembles. In this picture,
dephasing causes the involved electrons to be removed from
their original pure state, and subsequently added back to the
mixed state in a new constituent pure state, but with a phase
unrelated to its original phase. The net effect is that the popu-
lation remains unaffected (diagonal elements p;;) whereas the
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average coherence p;; decreases due to the randomization. As
will be explained in more detail later, the density matrices
used in the MC simulation will generally be mixed states
rather than pure states, since they describe the coherence of
all electrons with the same transverse momentum k | .

To capture the dynamics of coherent transport we need
the equation of motion, which describes the time-evolution
of the density operator and hence of the populations and
polarizations. This equation of motion is also known as the
quantum Liouville equation and can be written as

dp_ 1
P h[H,p], (8)

with H=H,+H', and H' represents a perturbation. In our
case, H' consists only of an adjustment of the electron po-
tential AV due to the coupling of the localized states in one
QCL module to the states in the neighboring modules, in the
spirit of the tight-binding (TB) model. It is possible to re-
write the above equation so that its expression is formally
identical to the calculation of a wavefunction. Looking at the
right-hand side of Eq. (8), we see that the elements of the
density operator p;; undergo a linear transformation and it is
therefore possible to define a linear operator £ to describe
this transformation. The Liouville Eq. (8) then becomes
dp i

—=-—Lp, 9
PR 9)

where L is called the Liouville operator, and
‘Cij,mn:Him‘Sjn_Hjn(Sim' (10)

In this representation (Liouville space), the superopera-
tor £ is a N>X N? matrix (N is the number of states in the
system) and p is a N’-dimensional vector. The number of
elements in £ scales with the fourth power of N, and systems
with many states can quickly pose almost insuperable com-
putational challenges. The simplifications and approxima-
tions discussed in Sec. III effectively “remove” many off-
diagonal elements, and vastly simplify the numerical
implementation. Note that Eq. (9) looks very similar to the
Schrodinger equation, and this allows us to apply the same
formalisms to both Hilbert (wavefunction) and Liouville
(density operator) spaces. Using this complete formal anal-
ogy, we can apply the calculation techniques developed for
wavefunctions to the density matrix formalism and obtain
the desired results.

So far we have described the coherent time evolution of
an electron wavefunction in a system H,, with only a constant
perturbation AVyg due to the interaction with the neighbor-
ing modules. Note that in the absence of scattering implicitly
assumed in Eq. (9), the transverse momentum k, is con-
served and AVyg is nonzero only for states with an identical
k | . There is no coherent interaction between states with dif-
ferent in-plane momentum in this approximation.15 As ex-
plained in the following, transport between states with dif-
ferent k, is handled separately, through semiclassical
scattering mechanisms within the same module. A fully co-
herent description of the many interactions, such as electron-
phonon, electron-impurity and electron-electron scattering,
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would be very involved and computationally intensive.
Therefore, it is more convenient to describe them as semi-
classical scattering events, in which electron scattering rates
are described by Fermi’s golden rule. In view of the setup of
our model, this is a reasonable approximation. In THz QCLs,
the injection barrier is usually much thicker than the other
(intramodule) barriers, which results in the “intermodule”
anticrossing gaps (where each level is on a different side of
the injection barrier) being considerably smaller than “intra-
module” anticrossing gaps. As explained in greater detail in
Sec. 1V, the intermodule interactions are thus more sensitive
to dephasing, and are best described with Eq. (9), whereas
for the intramodule transitions a semiclassical model is ad-
equate. The scattering events transport electrons between dif-
ferent states within the system, and hence cause the relax-
ation of the population with a scattering time 7. In addition
to this relaxation scattering, we can also consider “pure
dephasing” events that merely scramble the phase correlation
between two states at a rate Tgl without causing depopula-
tion. As mentioned before, pure dephasing accounts for the
effects of the bath on the electrons in the system, and as such
describe scattering events that are not explicitly included in
the simulation model. Both relaxation scattering and pure
dephasing contribute to the dephasing time 7yep:

1 1 1
= +_—.
Tdeph 2Tl T2

(11)

We note that the contribution of the relaxation scattering is
half of that of the pure dephasing. This is due to the fact that
T, describes the relaxation of the polarization p;;, which is
proportional to the amplitude of the oscillation (p;;oe™2);
on the other hand, 7 is a probability decay rate that reduces
p;i*|pyl*, proportional to the energy density (p;oe™T1
—p;*e”™). In the equations of motion, scattering and
pure dephasing add extra relaxation terms to the expressions
for p;; and p;;, which can be incorporated in the density ma-
trix formalism with a corresponding superoperator . Eq. (9)
now becomes

Ip;j
E‘L = % (‘Cij,mn + *Ej,mn)pmn’ (12)
with
1 . .
‘fij,mnz_z('yi"' 7])51m51n_rgu e5t'm5jna l 7&], (13)
and
Firji= i1 = 8)) = %6 (14)

Here ; and y; correspond to the total scattering rates out
of the i and j levels, y;; is the net scattering rate from level j
to level i and F%‘“(:T;‘) is the pure dephasing rate of the
coherent transport between i and j. It is important to note
that the dephasing of p;; is not due only to scattering between
i and j, but rather to all scattering events involving either i or
j. Electrons scattering out of a level i disrupt the coherent
transport from and to 7, and as such dephase all polarizations
pir(k# i) that involve level i. In Eq. (12), all the stochastic
aspects of the electron transport are included in the operator
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F. Using a phenomenological pure dephasing time constant
T,, Eq. (12) can be solved analytically to yield an expression
of current density.lﬁ’17 In this work, we use a MC method to
deal with the effect of F numerically, thus allowing us to
investigate more complicated structures than those in Refs.
16 and 17. Details of the numerical implementation of the
density matrix MC (DM-MC) simulation are given in the
following section.

lll. NUMERICAL IMPLEMENTATION

The MC method is very flexible and allows for a rela-
tively simple and straightforward simulation of the equations
of motion (12). On the other hand, the introduction of the
density matrix formalism requires that we keep track of
many more variables (e.g., the polarizations) than in the
semiclassical case, and the computational requirements of a
full-fledged implementation of these equations rapidly be-
come very demanding. However, the proper choice of the
basis wavefunctions allows us to develop an intuitive de-
scription of the transport in a QCL, which is in part coherent,
and in part semiclassical.

In most of the demonstrated THz QCL structures, the
levels within one module couple more strongly to each other
than to levels in a different module, and a semiclassical de-
scription of transport within these regions is adequate. In
order to reduce complexity, we restrict the use of coherent
transport to model the transport between those modules, e.g.,
through the injector barrier, while retaining a semiclassical
description for the transport inside each module. In this pic-
ture, current bottlenecks are described with the coherent den-
sity matrix model, whereas the transport through the rest of
the device is described semiclassically. The basic implemen-
tation of this semiclassical part of the simulation was de-
scribed previouslyf"lo‘18 and includes semiclassical electron-
phonon (acoustic and LO), electron-impurity (e-imp) and
electron-electron (e-e) scattering. A nonequilibrium, multi-
subband screening model was used for e-imp and e-e inter-
actions.

As outlined in the introduction, the choice of the proper
basis wavefunctions can be very important. This basis is used
to calculate semiclassical scattering rates as well as to com-
pose localized wave packets to model tunneling behavior and
localization. For reasons that are explored in Sec. IV, the use
of spatially extended wavefunctions (as in semiclassical
simulations) as basis wavefunctions fails to reproduce the
experimentally observed tunneling behavior for transport
through a barrier. To provide an intuitive picture of the elec-
tron states involved in transport, we chose a basis of wave-
functions which were localized within a module or submod-
ule of the QCL under investigation. The thick injector
barriers that confine a module form an obstruction for the
electron transport, and we expect dephasing effects to be
most prominent there. The choice of the basis wavefunctions
as confined to either side of this barrier, makes it easy to
describe and calculate resonant tunneling.

To find the localized wavefunctions qb?, we consider a
single, isolated module under bias, embedded in material
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with the same composition as the barriers. The wavefunc-
tions in the previous (n=-1) and subsequent (n=1) modules
are then found from

(%) = B (x = nlpeg) (15)

with energy E!'=E"+nqVy,s, where g=—1.6X1071°C is the
electron charge, /.4 i the module length, and Vi, is the
applied voltage per module. The interaction AV;; between the
localized wavefunctions ¢;" and d) with respectlve in-plane
momenta k, =k; and k; is then determmed with a tight-
binding model:

AVi(k; k) = f ¢ (DAV(2) ¢ (2)dz 8y - (16)

Here AV(z) is the difference in the confining potential be-
tween a single module and a superlattice composed of a rep-
etition of this module:

AV(z) = Voarr = E Vmod(z - mlmod)» z<0,

m<0
AV(z)=0, 0<z<lIpe, (17)
AV(Z) = Vbarr - 2 Vmod(Z - mlmod)’ 7> lmod»

m>0

where V., is the barrier potential and V4 is the unbiased
module potential profile. In practice, AV(z) is restricted to
the influence of next-neighbor modules (n=-1,1) because
QCL modules are usually very wide compared to the extinc-
tion length of the localized wavefunctions. Also note that
AV;:AV;I»I. The coherent intramodule transport due to AV?I
is negligible compared to the scattering-mediated transport.
It should be stressed again that in the absence of scattering,
the transverse momentum k | is conserved and AVZ-(ki,kj) is
nonzero only for states with an identical k | . In what follows
we will abbreviate AV (K K; )5kk with AV;;. Note that this
calculated interaction depends (Weakly) on bias, as the
changing potential and interactions within the module shift
the wavefunctions around.

It should be pointed out that this approach yields a direct
estimate of the anticrossing gap A;; =2|AV;, | between levels
q‘) and ¢!, and it makes this parameter easﬂy accessible for
investigation. Since the injector barrier thickness only affects
the calculated A;; and not the localized wavefunctions, this
approach is very convenient to study the effect of barrier
thickness on transport (see Sec. IV).

As mentioned before, we choose to adopt a “hybrid”
strategy when including the density matrix formalism into
the MC simulation. Only the transport through the injector
barriers is modeled in the DM formalism, the transport
through the rest of the module is still handled semiclassi-
cally. This means that all scattering rates are calculated using
Fermi’s golden rule instead of a full density matrix descrip-
tion, and are simulated using a MC approach. The transport
through the barrier is handled by the quantum Liouville
equation [Egs. (12)—(14)] which includes the depopulation
and pure dephasing scattering rates in the matrix F. The
solution to this equation exhibits oscillations on timescales
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varying from a few femtoseconds to tens of picoseconds, and
a full MC implementation of these equations would be very
computationally intensive. Instead, we choose to analytically
calculate the solutions to the equation of motion with a glo-
bal phenomenological pure dephasing rate I'}}"*= T,' that ap-
plies to all subband states:

Ip;;
E‘L 2 [El] mn T2 im ]n]pmn (18)

T, can be estimated from measurements of the spontaneous
emission linewidth. By doing this, we describe the damping
of the Rabi oscillation with two numerical methods: pure
dephasing (T,) is accounted for analytically and is assumed
to be constant for the duration of the simulation; scattering
dephasing (due to e-LO-phonon, e-e, and e-imp scattering) is
calculated using a MC method and can (and will) vary with
time. This scheme allows us to separate the time scales of
pure and scattering dephasing, as the MC sampling rate is
not affected by the pure dephasing time. The description of
the time evolution of (an ensemble of) electrons between
scattering events includes both coherent transport and pure
dephasing. The practical implementation is straightforward.
An arbitrary density matrix p can be described at time 7=1:

plto) = E Ckl(fo)Pgl’ (19)
k.l
with
pu =i (20)

Because the Liouville operator is a linear operator, we can
describe the time dependence of a density matrix as the sum
of the time evolutions of its components. If we write py(?)
for the solution to the equation of motion (including only
pure dephasing scattering as discussed previously), i.e., py(?)
is solved from Eq. (18) for the basis density matrices p},, we
find

(D) = 2 E0(0)pl,, (1)

and after a flight time At, p is transformed into

pltg+An)= > Ckl(lo)cklo Al)Pgm- (22)

k,l,m,n

The a priori unknown dephasing rates due to relaxation scat-
tering can then be added during the MC simulation by setting
the appropriate off-diagonal element p;; to zero every second
time a scattering event affecting levels i or j happens. This
ensures that the dephasing rate due to relaxation scattering is
half of (y,+7;), as seen in Eq. (13). The affected diagonal
element p;; is adjusted accordingly as in the case of the semi-
classical model.

A semiclassical MC simulation deals with “integer” par-
ticles, i.e., every simulated particle represents an ensemble of
electrons that is not broken up during the course of the simu-
lation. In principle, all the particles in the ensemble can be
name tagged and monitored during their transport process
through the whole structure. The ensemble evolves and scat-
ters as a whole, and at every point in time has a single well-
defined momentum k ;. Whether a particle is viewed as a

Downloaded 09 Dec 2005 to 18.62.4.5. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



104505-6 H. Callebaut and Q. Hu

single electron or an ensemble of electrons is not important,
since it does not affect the particle dynamics. Because the
particles are indivisible, conservation laws dictate that their
total number remains constant over the course of the simu-
lation.

In the density matrix MC simulation, however, this is no
longer the case, and we can no longer identify a particle with
a single electron. Instead, each particle needs to be treated as
an ensemble of electrons. At the beginning of the simulation,
there is a limited number of particles with a specific energy
and momentum, each represented by a density matrix. The
absence of coherent interaction between two states with dif-
ferent k |, makes it convenient to assign a different density
matrix to every point in k, space as their (coherent) time
evolutions are independent. An ensemble p initially localized
in one level i will quickly spread out across multiple levels
due to coherent transport, while retaining its localization in
k , space:

p(0) = | X | — p(1) = 2 ()| bX - (23)
k,l

However, relaxation scattering is calculated semiclassically
and describes the transition of electrons from level i with
initial momentum k; (in the ensemble p%) to level j with
final momentum k;. Consequently, a scattering event only
affects the parts of p*i that refer to level i, namely the popu-
lation density pgi and the coherences pz‘ki(kaﬁ i), whereas the
other elements remain the same:

pgi — 0, (24)

pY,pki(k # i) — 0(50 % chance). (25)

The scattered electrons generally have a different momentum
k; #Kk;, and need to be represented in a new density matrix

p¥i, which initially consists of an electron wave packet local-
ized in level j:

P8 =)l (26)

The electron population originally represented by one den-
sity matrix is now spread over two density matrices p*i and
pi, and subsequent scattering will fragment them even fur-
ther. The result is an ever increasing number of ensembles
with different weights, spread out over k| space. To counter
this unbounded proliferation, we chose to group different
ensembles according to their distribution in k; space, by
assigning them to “bins” chosen to represent a grid in k
space. The different density matrices in one bin are very
close in k;, and can be approximately described with a
single density matrix which is the weighted sum of all den-
sity matrices within this bin.

IV. RESULTS AND DISCUSSION

To quantitatively illustrate the effects of dephasing and
coherence on transport through a barrier, it is instructive to
investigate a simple superlattice structure as sketched in Fig.
2(a), consisting of a succession of coupled quantum wells,
separated by a barrier with thickness #,,,, and with two en-
ergy levels 1 and 2 in each well. Every well corresponds to a
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FIG. 2. Time evolution of the population density in a superlattice with
16.8-nm-wide GaAs wells and 4.1-nm-wide Al ,5GajgsAs barriers. The
ground level in one well is in resonance with the first excited level in the
next well (A;,=3.9 meV). Level n=2 is depopulated by LO-phonon scat-
tering (750=~0.3 ps). A population density of 1x10'° cm™ is initially
placed in n=1’. (a) Conduction band profile and wavefunction probability
distributions of the generic superlattice structure used throughout this paper.
Also indicated are the barrier thickness #,,, and energy separation E,j,
which are referenced throughout. (b) Spatial distribution of the populations
of n=1" and n=2 vs time. The damped Rabi oscillations of the population
density are clearly visible. (c) Time evolution of the total population density
in n=1',2, and the ground state 1.

module, and the wavefunctions are localized in the wells
using the procedure outlined previously. The anticrossing
gap between n=1" and n=2 is given by A;,,=2AV,,. The
equations of motion can be written as

2iAV, 1,

d *
Z(Pu - ppn)= T(le - le)

_ (p11=p2n) = (p11 = Pzz)o

(27)
)
d AV, iE, P
e _ -, 28
d lP21 7 (p11=p2) 2 Taeoh (28)

where (p;;—pxn)y is the population difference at equilibrium,
and T;;ph=0.5 7' +T,'. These coupled equations can be
solved to find an expression for the current density through

. 16,17
the barrier " ':

|Q|27-deph
/ qul + (Elrz/ﬁ)szdeph + QZTszeph ' 29)
where E;/, is the energy detuning from resonance, ()
=2AV,,,/h is the Rabi oscillation frequency at resonance,
and N, is the total electron sheet density per well. This ex-
pression describes the current density versus detuning bias
E,/, as a Lorentzian with a full width at half-maximum of
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FIG. 3. Dependence of current density on bias for a superlattice consisting
of 15.5-nm-wide GaAs wells, separated by 4.1-nm Al 5GajgsAs barriers.
The energy separation E,; =42 meV and A,;/,=4.5 meV. Results are shown
for both the semiclassical and the density-matrix simulations.

AEpwpm = ﬂ[1 + 7y Tgepn] 2. (30)
Tdeph

The density matrix model provides a picture of a wave
packet oscillating between n=1" and n=2 at a frequency ()
with a damping rate of 73, This is illustrated in Figs. 2(b)
and 2(c), which show the spatial distribution of the popula-
tion density in a superlattice designed to study the dynamics
of the depopulation of the lower radiative level 4 in a
3.2 THz QCL investigated later in this section [Fig. 5(b)].
The electron extraction from level 4 critically relies on the
anticrossing with another level 3, which is subject to reso-
nant LO-phonon scattering (73.<<0.3 ps). In our simple
model we identify 4 and 3 (in the QCL) with the ground state
17 and the first excited state 2, respectively. The anticrossing
energy A;,=2AV,1, is 3.9 meV and E,, is 39 meV. A popu-
lation of 1X10'° cm™ is initially situated in 1’ and then
oscillates back and forth between the anticrossed levels 1’
and 2. There is no pure dephasing added in this simulation
(1/T,=0). Electrons in state 2 are subject to resonant LO-
phonon depopulation, which results in a damped Rabi oscil-
lation with 74, = 0.6 ps. From Fig. 2(c), we can see it takes
about 1.5 ps for the majority of the electrons to transfer from
1" (corresponding to the lower radiative level 4) to 1, which
corresponds to the relaxation/injection states in the QCL.
This is slower than what we would expect from the semiclas-
sical picture, where 7,~0.5 ps.20 Note that even in the ab-
sence of dephasing, it would take approximately /h/2€)
~(.5 ps for the electrons to oscillate across the barrier,
which largely explains the longer dwell time in the density
matrix calculation.

The dependence of the current density on the pure
dephasing rate T;l is shown in Fig. 3 for a similar superlat-
tice. At resonance, the peak current density decreases with
Tgl as the Rabi oscillation is increasingly damped and it
becomes more and more difficult for electrons to tunnel
through the barrier. The difference between the semiclassical
result and the density matrix simulation in the limit of 75"
=0 is due to the relaxation dephasing, which is the term
—1/2(y;+7v,) in Eq. (13). Away from resonance, the DM
model predicts a broader I-V curve with a higher current
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FIG. 4. Dependence of peak current density on anticrossing gap A/, for a
GaAs/ Al ;Ga,;As superlattice with 14.8-nm-thick wells separated by bar-
riers with varying thicknesses. The energy separation E,;=~60 meV. The
semiclassical results are independent of A, and the barrier thickness,
whereas the density matrix simulation clearly shows the decrease of the
peak current density with smaller A/, and higher dephasing rate 75'. The
dashed lines represent theoretical calculations using Eq. (29).

density than the semiclassical picture. This is due to the level
broadening [Eq. (30)] which relaxes the energy alignment of
n=1" and n=2. Especially at high dephasing rates, the in-
creased interaction can cause the upper radiative state (not
shown here) to couple more strongly to the injector/
relaxation level 1, and thus reduce the depopulation selectiv-
ity.

The influence of the barrier thickness f,,,, is felt through
a diminished coupling AV, /,, and can be illustrated by inves-
tigating the current transport through a barrier. We consider a
superlattice structure similar to the one shown in Fig. 2(a),
with an energy separation E,;~60 meV which is much
larger than 7wy . This ensures that, in the semiclassical pic-
ture, the intrawell energy difference E,; still exceeds hw g
even for large anticrossing gaps so that scattering from n
=2 is dominated by LO-phonon scattering (7]2“0%0.3 ps, and
nearly independent of E,;). The peak current density occurs
when the lower level 1’ of one well lines up with the upper
level 2 of the adjacent well. In the semiclassical approach,
the anticrossed wavefunctions are delocalized across both
wells, and share an identical carrier lifetime 7 (independent
of barrier thickness) disregarding the minor energy shift due
to the anticrossing. This leads to the unphysical result that
the peak current density in the semiclassical description does
not depend on the barrier thickness (as shown in Fig. 4). In
other words, in this picture electrons scatter from one spa-
tially extended state into the next, and never experience any
effect from the barrier whatsoever, as illustrated previously
in Fig. 1. To include tunneling effects, and hence more ac-
curately describe transport through a barrier, we need to take
into account the phase correlation between localized basis
states, so that phase relaxation results in a collapse into lo-
calized states, thus interrupting resonant tunneling.

The results for the density matrix calculations are also
shown in Fig. 4. In contrast to the semiclassical results, the
DM-MC calculations reveal a strong dependence of the peak
current density on the anticrossing gap (or barrier thickness)
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and the pure dephasing time 7,. For large anticrossing gaps
or thinner barriers, the Rabi oscillation frequency is much
higher than the dephasing rate and the peak current density
approaches the semiclassical limit. In this regime the popu-
lation is spread equally across both subbands, and the current
density is given approximately by J=gN,/27,. For smaller
anticrossing gaps, or thicker barriers, the dephasing scatter-
ing becomes increasingly important and inhibits the transport
through the barrier, which results in a lower peak current
density. From Eq. (29) we can see that the current density
starts to roll off when A, =%/ ) Taeph- 1he dashed lines are
analytical results calculated from Eq. (29), which agree well
with our DM-MC results. The good agreement based on this
simple structure gives us confidence to investigate more
complicated structures using the numerical DM-MC tool de-
veloped in this work.

Note that localized basis wavefunctions are necessary to
produce the above result within the density matrix formal-
ism. If we chose spatially extended basis wavefunctions (as
in the semiclassical case), a localized wave packet would be
represented as a coherent superposition of extended wave-
functions:

1
|w>=$ 19) +|A)) — p=[)(. (31)

In the absence of dephasing (and scattering), the time evolu-
tion of this wave packet would be identical to the one de-
scribed with localized basis wavefunctions. A proper imple-
mentation of scattering requires a full density matrix
approach,21 which is not expected to result in a substantial
difference between the two models. However, the inclusion
of pure dephasing causes the off-diagonal elements of p to
decrease, so that even in the strong dephasing limit of 7,
—0:

1 1
p= 5|S><S| + 5|A><A|, (32)

which is still equivalent to the semiclassical model, and no
decrease in current density is predicted. This means that ex-
tended wavefunctions are not a good choice for the basis
wavefunctions in our model.

To investigate the utility of the density matrix method in
the modeling of electron transport in QCLs, the density ma-
trix model and a semiclassical MC simulation were used to
calculate current densities, populations and electron tempera-
tures for several different QC designs. Here we focus on two
representative examples, for which experimental results were
published. As mentioned in Sec. III, the simulations include
semiclassical electron-phonon (acoustic and LO), electron-
impurity (e-imp) and electron-electron (e-e) scattering, and a
nonequilibrium, multisubband screening model for e-imp
and e-e interactions. The only phenomenological parameter
is the pure dephasing time 7, used in the DM-MC calcula-
tions. In all simulations, except for Fig. 8, the lattice tem-
perature 7j,, was assumed to be 25 K.

The first investigated device is a simple double-
quantum-well structure’ (T65), whose conduction band dia-
gram and wavefunctions are reproduced here in Fig. 5(a). In
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] o Ep=175meV | (a)

FIG. 5. (a) Band structure for T65. The device consists of
GaAs/ Al ;sGagygsAs layers with thicknesses (nm) 5.5/23.4/2.4/13.2 (bar-
riers in boldface, wells in plain text) and is doped to n=1.4 X 10! cm™ in
the 13.2-nm-wide well, resulting in a sheet density of 1.85X10' cm™
per module. (b) Band structure for FL177C-MS5, which consists
of GaAs/ Al 5GaggsAs layers with thicknesses (nm)
5.5/7.9/2.5/6.5/4.1/15.5/3.0/9.0 and is doped to n=1.9X 10'® cm™ in the
15.5-nm-wide well, resulting in a sheet density of 3 X 10'° cm™2 per module.

experiments, the current characteristics of this device were
nearly independent of temperature for a lattice temperature
between 5 and 77 K, whereas the electroluminescence (pro-
portional to 73) dropped by a factor of 1.5. No gain or super-
linear power-current (L-I) relations were ever observed. This
is a strong indication that transport through the thick injector
barrier is limited by incoherent tunneling between the injec-
tor state n=1" and the upper radiative level n=3 (A,
~(.8 meV). Furthermore, magnetotunneling spectroscopy
revealed clear evidence of an anticrossing gap of A,
~2 meV between levels 1 and 2, validating our hybrid
model of using a semiclassical model for intramodule trans-
port. Table I and Fig. 6 present the main calculation results
with and without coherent transport. The DM simulations
included a phenomenological dephasing time of 0.5 ps,

TABLE I. Calculated subband energy, temperature, and population density
of T65 at injection anticrossing (77,,=25 K) for the semiclassical and den-
sity matrix simulations.

T, (K) Population (10'° cm™2)
n E (meV) Semiclassical DM Semiclassical DM
1 0 50 86 0.53 0.91
2 3.9 85 95 0.37 0.58
3 25.0 64 62 0.95 0.42
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FIG. 6. Key results of the MC simulations for T65. The lattice temperature
is assumed to be 25 K. (a) Current density for a range of biases. The density
matrix results were obtained with a phenomenological pure dephasing time
T,=0.5 ps. (b) Electron temperature for the upper subband involved in the
radiative transition, n=3. (c) The calculated population inversion n;—n,,
which is proportional to the gain.

which is consistent with the measured spontaneous emission
linewidth Af of 2 meV (0.5 THz, and Af=h/«T,). The DM
calculations show a peak current density of 116 A/cm™? that
corresponds well with the experiments (123 A/cm™),
whereas the semiclassical model overestimated the peak cur-
rent density (186 A/cm™). In both simulations there is a
bump in the I-V characteristic around 20 mV/module, close
to the anticrossing of n=2' and n=3. However, there is no
evidence of this transition in the experimental results. The
sharp features in both the current density and electron tem-
perature, which are clearly visible in the semiclassical calcu-
lation, are smoothed out in the DM results. Most important is
the absence of population inversion, and hence gain, in the
DM calculation, which is in agreement with the experimental
results. On the other hand, the semiclassical results indicate a
maximum population inversion of n3—n,~6Xx10° cm™
(corresponding to a Ansp~1.4X 10" cm™), and a predicted
gain of 180 cm™! for a spontaneous emission linewidth Af
=2 meV. Such a high level of gain would have made lasing
quite easy to achieve. However, no lasing was observed from
T65 and similar structures, even embedded in metal-metal
waveguides.19 Our DM analysis indicates that it is likely that
electrons are “stuck” behind the injection barriers, residing
mostly in levels 1’ and 2’ instead of equally populating 1’
and 3 as the semiclassical model predicted.

The second QC device is a 3.2 THz QCL,8 labeled
FL177C-M5, which operated up to ~130 K in pulsed mode,
and whose band diagram and wavefunctions are reproduced
in Fig. 5(b). Table II and Fig. 7 show a comparison of the
key MC results with and without coherent transport (7,
=0.33 ps, to reproduce a FWHM linewidth of 6 meV to-
gether with relaxation scattering 7, =~ 0.5 ps). From Fig. 7(a),
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TABLE II. Calculated subband energy, temperature, and population density
of the 3.2 THz laser at the peak current density predicted by the DM simu-
lation (Vy;,s=59 mV/module), for the semiclassical and density matrix simu-
lations. The lattice temperature is 25 K.

T, (K) Population (10'° cm™?)
n E (meV) Semiclassical DM Semiclassical DM
1 0 114 143 1.14 1.27
2 54 127 138 0.74 0.93
3 41.3 152 174 0.13 0.10
4 46.3 154 174 0.19 0.11
5 60.4 115 108 0.73 0.52

we can see that the semiclassical results exhibit a large para-
sitic current at biases around 40 mV/module, corresponding
to the 1’ — 3 (with A;/3=0.45 meV) transition. Similar to the
3.4 THz QCL explored in Ref. 4, the overestimation of the
current density in this parasitic channel is due to the use of
extended basis states in the calculation of the scattering rates.
The density matrix approach largely eliminates this problem,
but there is still a noticeable hump in the /-V whereas there is
none in the measurements, although the presence of the para-
sitic channel is still evident in differential conductance
measurements.® This simulation result corresponds well with
the full quantum mechanical calculations done for this same
structure in Ref. 22, which is a further indication that the
used DM approach adequately models the coherence effects
in the electron transport. The predicted DM peak current
density (700 A/cm™2) and gain are achieved when the upper
radiative level is lined up between the 2'-5 and 1’-5 anti-
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FIG. 7. Key results of the MC simulations for the 3.2 THz QCL. The lattice
temperature is assumed to be 25 K. (a) Current density for a range of biases.
The density matrix results were obtained with a phenomenological pure
dephasing time of 0.33 ps. (b) Electron temperature for the upper subband
involved in the radiative transition, n=5. (c) The calculated population in-
version ns—ny. (d) Calculated gain for a spontaneous emission linewidth of
6 meV.
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FIG. 8. Maximum gain of FL177C-MS5 as a function of lattice temperature
for the semiclassical and DM-MC simulations, assuming a spontaneous
emission linewidth of 6 meV. In experiments, the lattice temperature is
somewhat higher than the heat-sink temperature, and the devices lase up to
~130 K heat-sink temperature.

crossings, and not at the 1’-5 anticrossing as for the semi-
classical simulation. Due to the finite linewidth of the levels
[>4 meV, see Eq. (30)], which is comparable to E,
~5 meV, their similar anticrossing gaps (A;5=~A,s
~ 1.8 meV) and the similar population densities of 1’ and 2',
injection is most efficient when both 1’ and 2’ contribute.
Note that for small linewidths, injection from 2’ and 1’ into
5 is more centered around their respective anticrossing bias,
which may result in a current peak at the 2'-5 anticrossing,
followed by a region of negative differential resistance
(NDR). In experiments, this early NDR would prevent the
device from reaching its designed level alignment and de-
grade its performance. The predicted peak population inver-
sion ANs, and gain g are lower for the DM simulations than
for the semiclassical calculations, ANs,=4.1X10° cm™ (g
=32 cm™! for Af=6 meV) and ANs,=6.4X10° cm™ (g
=52 cm™!), respectively. This is largely due to a decreased
injection efficiency and selectivity, as explained in the dis-
cussion of Fig. 3. To investigate the high-temperature perfor-
mance of the QCL, simulations for lattice temperatures up to
200 K were performed. As can be seen from Fig. 8, both
simulations predict a steady decrease of the gain to g
=8 cm™' (DM) and 14 cm™' (semiclassical) at 200 K. This
decline is mainly due to the increased LO-phonon mediated
depopulation of level 5. In experiments, CW lasing was ob-
served in very small devices (100X 100 um?) immersed in
liquid nitrogen, which roughly corresponds to a facet mirror
loss of 40 cm™', for a facet reflectivity of ~60%.% This ex-
perimentally inferred gain agrees reasonably well with the
predicted gain of ~30 cm™! (DM) and 44 cm™' (semiclassi-
cal) at 77 K. The underestimation of gain and peak current
density in the DM simulation indicates that the used pure
dephasing time 7,=0.33 ps may be too short.

Even though the difference between the peak gain and
the current densities calculated from the DM-MC and semi-
classical MC is only quantitative, there is an important quali-
tative difference between the two calculations in the current-
voltage (I-V) characteristics. As can be seen in Fig. 7(a), the
semiclassical current density at the 1’-3 parasitic channel is
higher than that at the designed bias of the 1’-5 anticrossing.
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Experimentally, this would have resulted in a negative dif-
ferential resistance (NDR) above the bias at the 1’-3 anti-
crossing, making the desired 1'-5 energy alignment inacces-
sible. Fortunately, dephasing reduces the current density at
this parasitic channel much more than at the designed bias
due to the smaller anticrossing gap A;3~0.5 meV, com-
pared to A5~ 1.8 meV. Consequently, we were able to bias
the 3.2 THz laser device at the 1’-5 energy alignment and
achieve lasing. However, for lower-frequency QCLs at
2.1 THz, the biases of 1’-3 and 1’-5 are closer, resulting in
much more similar current densities at those respective bias
conditions and a much smaller range of current densities in
which the devices laser.”* In this important aspect, the semi-
classical MC calculation is useless in predicting the relative
current densities at the 1’-3 and 1’-5 biases, and whether a
NDR will occur. With the much smoother /-V that is closer
to the experimental results, we hope that the DM-MC could
help us in designing suitable structures with a reduced 1’-3
parasitic current density for lower-frequency lasers.

V. CONCLUSION

In conclusion, as a first step we have shown that the
inclusion of a model for coherent transport and dephasing is
essential to describe the transport dynamics of intersubband
transport in THz QCLs. The density matrix model, together
with the choice of localized basis states, allows for an intui-
tive treatment of transport between weakly coupled levels
and the incorporation of the effects of sequential tunneling
into a MC simulation. We have used a semiclassical and a
density matrix MC simulation to compare calculated current
densities and gain with experimental measurements. The in-
clusion of coherent transport showed marked improvement
over the semiclassical model. It largely eliminated the over-
estimation of the peak current density and parasitic current
channels, and correctly predicted the absence of a population
inversion where the semiclassical model predicted a large
gain. However, more remains to be done. The use of a single,
phenomenological pure dephasing time to describe the inter-
action between all subbands does not take into account the
substantial differences in elastic intrasubband (impurity and
interface roughness) scattering for different levels in a mod-
ule. The different models used to describe these scattering
mechanisms and the large scattering rates these models pre-
dict for small-angle scattering, make it difficult to depend-
ably estimate their contribution to dephasing. More detailed
calculations incorporating this subband-dependent dephasing
can provide a model that uses no phenomenological param-
eters, and will yield a more accurate description of the elec-
tron transport. This more comprehensive simulation can be a
valuable tool for designing and analyzing QCLs.
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