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Antenna Model for Wire Lasers
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An antenna model is proposed for long (L� �) lasers with subwavelength cross sections (wire lasers).
It is shown that the far-field pattern of the wire lasers is determined by the ratio of the wavelength to the
length. The radiation of the wire laser is predicted to be concentrated in a narrow beam � ’
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laser modes where the longitudinal phase velocity is in synchronism with the velocity of light in air.
Experimental results obtained using a terahertz quantum cascade wire laser are in agreement with the
model.
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Is it possible to concentrate radiation from a laser with a
subwavelength cross section into a narrow beam? The
combination of a small laser aperture with a low beam
divergence would open the perspective of local laser
excitation of individual nano-objects, which would be of
interest in numerous applications such as optical commu-
nication, high-density magneto-optic data storage, biologi-
cal studies, and quantum information. However, the
reduction of a laser aperture is known to cause an increase
of the beam divergence due to diffraction. The diffraction
limited minimum angular size of the beam for radiation
with a wavelength � for an aperture of size a is determined
by � ’ �=a for sources with a > � [1]. Thus, for example,
in diode lasers, the localization of the optical mode in a thin
active region (with the width of the order of several wave-
lengths) leads to a high beam divergence in the plane
perpendicular to the active layer [2]. High efficiency and
gain achieved in nanostructure lasers permits laser dimen-
sions comparable to or smaller than the wavelength [3–5].
Highly divergent radiation is expected from lasers with
subwavelength apertures [4]. The methods used to improve
the directivity of laser radiation, using, for example, sur-
face emission [2], an array of lasers [6], or using external
optical elements, are all based on the increase of the
effective size of an aperture. The recently discovered ef-
fects of surface plasmons on the transmission of light
through subwavelength apertures [7] also imply an in-
crease of the effective aperture size due to the formation
of plasmon-polaron excitations at the surface of a metallic
screen. The development of nanotechnologies has brought
along new methods to manipulate light on the scales com-
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parable to the wavelength using the concepts of photonic
crystals [8], left-handed synthetic materials [9], and one-
dimensional plasmonic waveguides [10]. These methods
however do not solve the problem of the guidance of light
in the air outside the artificially fabricated media.

In this Letter we propose a method to achieve a high
directivity for lasers with subwavelength apertures (wire
lasers). The idea is based on an antenna approach to
analyze laser modes. Since individual sources in the laser
medium emit coherently with their phases determined by
the cavity modes, each laser mode can be thought of as a
continuous phased array. The different laser modes do not
interfere because of their slightly different frequencies and
the far field of a laser operating in a multimode regime is
therefore a combination of intensities provided by different
modes, as if there are several phased arrays at the same
location. We show that wire lasers with subwavelength
transverse dimensions and with lengths much bigger than
the wavelength (L� �) are analogous to traveling wave
antennas. Their far field is determined by the interference
of radiation from the longitudinal distribution of emission
sources. The beam pattern of the wire lasers consists of
axially symmetric conelike maxima with angular sizes
determined by the ratio of the wavelength to the length
of the laser cavity. The predictions of the model have been
verified experimentally using wire lasers based on tera-
hertz quantum cascade structures. The short range axially
symmetric variations of the far-field intensity have been
observed with the angular sizes determined by the length of
the laser in agreement with our model. We predict that the
synchronization of the longitudinal phase velocities of the
4-1 © 2006 The American Physical Society
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modes with that of light in air will produce a concentration
of the laser radiation in a narrow beam due to the interfer-
ence of radiation from the longitudinal mode distribution.
The angular divergence of such a beam is determined by
the square root of the wavelength divided by the length of
the laser cavity: � ’

������������
2�=L

p
. Hence, there are no principal

limitations on the beam divergence of the wire laser due to
the small aperture size: a laser beam of any desired direc-
tivity can be obtained by making the laser longer.

The calculation of the beam profile from a wire laser
cannot be performed using the standard aperture diffrac-
tion methods [11]. These methods, based on Huygens’
principle, are rigorous when applied to the field distribu-
tion on a closed surface. Approximate solutions are ob-
tained using the integration over the surface of the aperture.
The frequently used method of the Kirchhoff integral over
the aperture with a finite size leads to solutions inconsistent
with Maxwell equations. It gives suitable approximations
of the beam pattern only for large apertures and paraxial
diffraction angles [12]. The electrodynamic formulations
of Huygens’ principle are based on the vector Green theo-
rem [13], Lorentz lemma [14], and uniqueness theorem
[15] providing solutions of radiation problems consistent
with Maxwell equations. However in the case of subwave-
length apertures the beam pattern is influenced signifi-
cantly by the field distribution outside the aperture. Exten-
sion of the surface of integration to the infinite plane per-
pendicular to the longitudinal axis of the laser beyond the
borders of the aperture would allow to account for this
influence. Unfortunately, the exact calculation of the near
field beyond the borders of the aperture is a complicated
problem and it should be noted that approximate methods
lead to large relative errors in regions where the field val-
ues are small. Besides, it should also be noted that the laser
modes are often calculated without taking into account the
influence of the length of the laser on the transverse field
distribution. As will be shown, the latter turns out to be of
primary importance for the far field of wire lasers.

The problem of calculating the transverse field distribu-
tion outside the laser can be avoided using an alternative
approach based on the equivalence of displacement cur-
rents in dielectric and conductivity currents. The radiation
field can then be expressed in terms of the field values
inside the volume of the cavity. The latter are relatively big
and thus are easier to determine and verify. This method
naturally allows us to account for and analyze the influence
of the laser length on the beam structure. It can be shown
[16] that the system of Maxwell equations for radiation in a
dielectric medium is equivalent to that for radiation in
vacuum with equivalent current sources with the complex
amplitudes (Gaussian units):

J eq � Jc �
j!�"� 1�

4�
E; (1)

where Jc is the conduction current distribution, E the
electric field, " the dielectric constant, and! the frequency
of the field. The field radiated by the laser is the same as
17390
that of the equivalent current distribution and is described
by the electric vector potential:

A �
1

c

Z
v

Jeq
exp��jkr�

r
dV; (2)

where the integration is carried out over the volume of the
laser, with k � !=c, c the velocity of light, and r the
distance between the observation point and the arbitrary
point inside the laser. In the Lorentz gauge, the electric
field is expressed in terms of the vector potential as

E � �
j!
c

A�
c
j!
r�r �A�: (3)

To calculate the field outside the source differential opera-
tions of Eq. (2) can be introduced in the integral. In the far
field the expression for the electric field can be simplified
further by using for the phase factor kr ’ kR� �k � r0�,
with R the radius vector from the reference point inside the
laser cavity to the observation point, r0 the radius vector of
the integration point of the laser cavity, and k � kR=R,
and using r ’ R for the denominator of Eq. (2):

E � �
j!
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v
Jieq exp�jk � r0�dr0: (4)

The term Ei � �r0 	 �xi0 	 r0�
 is the polarization factor
of the electric field produced by the component of the
current along the i coordinate axis, r0 � R=R, xi0 is the
unit vector in the i direction, and Jieq are the Cartesian
components of the equivalent current vector.

At this point we have to make an assumption about the
structure of the laser mode. We assume that the longitudi-
nal dimension of the laser is much larger than the trans-
verse dimensions (L� a) and than the wavelength
(L� �). Let the laser medium be invariant to inversion
and periodic in the longitudinal direction with period �
much smaller than the wavelength. Solutions of the wave
equation for an infinite medium periodic in the z direction
are Bloch functions in the z coordinate. Thus the equivalent
current for an optical mode can be presented as a linear
combination of Bloch functions:

Jieq � ~Ji��; z��exp�jqz� � exp��jqz�
; (5)

where � is the transverse radius vector, ~Ji��; z� the periodic
function of the longitudinal coordinate z, and the wave
number of the mode q is a function of the mode frequency
! and transverse field distribution of the mode. Because of
the inversion symmetry the equivalent currents, Jieq, are
either even [the plus sign in Eq. (5)] or odd (the minus sign)
parity functions of the z coordinate. The longitudinal phase
velocity is introduced as cL � !=q. Boundary conditions
at the ends of the laser wire (z � �L=2) determine a
discrete frequency spectrum for laser modes. A combina-
tion of Bloch waves does in general not satisfy the bound-
ary conditions, the edges of a wire laser can be considered
as sources of spherical and evanescent waves. We assume
that the equivalent current inside the laser with finite length
4-2
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is described by Eq. (5), neglecting the edge effects in view
of our assumption of a large laser length. The integrals in
Eq. (4) with the current sources given by Eq. (5) can be
approximated by averaging the fast oscillating functions
over the period 1

�

R
�

~Ji��; z�dz � �Ji���. Then the integrals
over the longitudinal and the transverse coordinates in
Eq. (4) factor out and the far-field amplitude is given by

E � �
j!

c2

exp��jkR�
R

L
X
i
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z
i ; (6)

where

F?i �
Z
S

�Ji��� exp�jk? � ��d� (7)

is an integral over the transverse field distribution analo-
gous to that used in aperture methods of the far-field
calculation [1]. When the aperture size is larger than the
wavelength, this transverse factor determines the minimum
angular divergence of the beam formed by the interference
of radiation from the transverse distribution of emission
sources:

� ’ �=a: (8)

In the case of an aperture much smaller than the wave-
length ka� 2�, the exponential term in Eq. (7) can be
expressed as a power series of ki�i, where ki and �i are the
components of the wave vector and the transverse radius
vector. The angular dependence of the transverse factor is
determined by kmi k

l
j corresponding to the first nonvanishing

momentum of the transverse distribution of the equivalent
current, which gives a slow angular dependence or no
FIG. 1. The dependence of the normalized far-field intensity
determined by the square of the longitudinal factor jFzi j

2 on the
angle with respect to the axis of the wire laser (a) for different
ratios of the longitudinal phase velocity of the laser mode cL to
the velocity of light c. (b) for different ratios of the laser length L
to the wavelength � in the case of the phase synchronism. Note
the two main lobes in the case of the phase synchronism (cL=c �
1) in the forward direction and backward direction along the
laser axis with the width � ’

������������
2�=L

p
.

17390
dependence at all (when both m and n are equal to zero).
In this case the far-field amplitude is determined mainly by
the longitudinal factor (Fig. 1):

Fzi �
sin�’��
’�


sin�’��
’�

; (9)

where ’� � �c=cL � cos���
�L=� are the phase differ-
ences for the radiation associated with �q components of
Jieq, coming from the center (z � 0) and from the edges
(z � �L=2) of the laser, � is an angle between the longi-
tudinal axis and the direction to the observation point. The
minus and the plus signs in Eq. (9) are used for even and
odd Jieq respectively. The components of the longitudinal
factor introduced in Eq. (9) are analogous to the far field of
traveling wave antennas. The pattern is axially symmetric
with maximum amplitudes in the directions � given by the
relation

j’�j�j�c=cL�cos���
�L=�j�0; �n�1=2��; (10)

with n an integer.
For velocities cL < c, typical for a semiconductor me-

dium, there is no direction in which all the sources along
the cavity emit in phase (j’�j> 0). The maxima corre-
spond to directions where the number of sources emitting
in phase is relatively big, and form circles in the plane
perpendicular to the longitudinal axis [Figs. 2(a) and 2(b)].
The angular size d� of the intensity variations is deter-
FIG. 2 (color). (a)–(b) Calculated angular dependence of the
far-field intensity in the plane perpendicular to the longitudinal
axis of the laser for c=cL � 3:3 and different ratios of the length
L and the wavelength � of the laser. An ‘‘equirectangular
projection’’ has been used; scales are given in degrees. (c)–
(d) experimental beam patterns from terahertz QCL’s with the
same L=� ratios. Note the circular structure; the angular width of
the circles decreases with the increase of L=�.
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mined by the ratio of the wavelength to the laser length:
cos��� d�� � cos��� � �=L. The decay of the intensity
from one circle to another is slower for larger differences in
phase velocities.

In the specific case of synchronism of the longitudinal
phase velocity with that of light cL � c, only two strong
lobes (see Fig. 1) are formed in the positive and negative
directions of the longitudinal axis where all the sources
emit in phase (’� � 0). The width of these lobes is
determined by the relation ’� � �, which corresponds
to the condition that the phase difference for radiation from
all the sources along the laser length is smaller than 2�.
From Eq. (10), in the limit of small angle 1� cos��� ’
�2=2, we have

� ’
������������
2�=L

p
: (11)

This angle is smaller than the diffraction angle associated
with the transverse factor [Eq. (8)], and determines the
divergence of the beam when the Fresnel number of the
laser is small: NF � a2=�L� 1, which is always true for
subwavelength wire lasers.

This far-field pattern is independent of the mechanism of
laser emission and is general for all wire lasers. Wire lasers
can be based on diode structures, quantum wires, arrays of
quantum dots, etc., We have tested our model for c=cL �
3:3 using single mode terahertz (� ’ 100 �m) quantum
cascade lasers (QCL’s) formed by GaAs based structures
with subwavelength apertures 10 �m	 25 �m and me-
tallic contacts (‘‘metal-metal waveguide’’ [4,17]). The
length is much larger than the wavelength. Details of the
experimental study of the beam profile of the cascade
lasers are presented elsewhere [18]. The observed far-field
beam pattern shows strong modulations of the intensity
[Figs. 2(c) and 2(d)]. The beam profile is almost axially
symmetric with the directions of the maxima forming
cones around the longitudinal axis of the waveguide in
agreement with our model. Relatively low intensity is
experimentally observed in the lower part of the plane
perpendicular to the longitudinal axis, because in that
part of space the radiation from the cavity is partially
blocked by the sample holder. The angular widths of the
maxima decrease with the increase of the cavity length.
The directions of the maxima are well described by
Eq. (10). We conclude that the experimental results are in
very good agreement with the model.

The experimental verification of our prediction of high
directivity for wire lasers with a suitable value for the
phase velocities cL � c is a matter of future investigations.
Different solutions can be found to achieve the synchron-
ism depending on the type of a laser. For example, for a
dielectric waveguide with metal contacts the laser modes
near the cutoff regime are known to have longitudinal
phase velocities close to that of light.

In conclusion, we have proposed an antenna model for
long lasers with subwavelength apertures and verified
some predictions experimentally. Based on this model we
17390
show that the far-field pattern of wire lasers is determined
by the ratio of the wavelength to the length of the laser. We
predict that in case of synchronism of the longitudinal
phase velocity of the optical mode with that of light the
radiation can be concentrated in a narrow beam with a
divergency below the diffraction limit.
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02-17437a. I. Kašalynas and A. J. L. Adam acknowledge
support through the European Union HP-RTN Project
under Contract No. HPRN-CT-2002-00206. The work at
MIT is supported by AFOSR, NASA, and the NSF. Sandia
is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the U.S.
Department of Energy under Contract No. DE-AC04-
94AL85000.
4-4
*Electronic address: orlova@ipm.sci-nnov.ru
†Permanent address: Semiconductors Physics Institute,
A. Gostauto 11, LT-01108 Vilnius, Lithuania.

‡Also with SRON National Institute for Space Research,
Utrecht, The Netherlands.

[1] M. Born and E. Wolf, Principles of Optics: Electro-
magnetic Theory of Propagation, Interference and
Diffraction of Light (Pergamon, Oxford, 1999), 7th ed.

[2] Zh. I. Alferov et al., IEEE J. Quantum Electron. 11, 449
(1975).

[3] R. Kohler et al., Nature (London) 417, 156 (2002).
[4] S. Kohen, B. S. Williams, and Qing Hu, J. Appl. Phys. 97,

053106 (2005).
[5] K. J. Vahala, Nature (London) 424, 839 (2003).
[6] R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and

D. Scifres, Appl. Phys. Lett. 58, 2586 (1991).
[7] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature

(London) 424, 824 (2003).
[8] Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987); S. John,

Phys. Rev. Lett. 58, 2486 (1987).
[9] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science

305, 788 (2004).
[10] Junichi Takahara et al., Opt. Lett. 22, 475 (1997);

Aristeidis Karalis et al., Phys. Rev. Lett. 95, 063901
(2005).

[11] S. Silver, Microwave Antenna Theory and Design
(Peregrinus, London, 1984).

[12] J. D. Jackson, Electrodynamics (Wiley, New York, 1998),
3rd ed.

[13] J. A. Stratton and L. I. Chu, Phys. Rev. 56, 99 (1939).
[14] A. Z. Fradin, Antennas of Ultra-High Frequencies (Soviet

Radio, Moscow, 1957).
[15] S. A. Schelkunoff, Phys. Rev. 56, 308 (1939).
[16] Computer Techniques for Electromagnetics, edited by

R. Mitra (Pergamon, Elmsford, NY, 1973), Chap 2.
[17] Q. Hu et al., Semicond. Sci. Technol. 20, S228 (2005).
[18] A. J. L. Adam et al., Appl. Phys. Lett. 88, 151105 (2006).


