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Abstract: The generation of frequency combs in the mid-infrared and terahertz regimes from
compact and potentially cheap sources could have a strong impact on spectroscopy, as many
molecules have their rotovibrational bands in this spectral range. Thus, quantum cascade lasers
(QCLs) are the perfect candidates for comb generation in these portions of the electromagnetic
spectrum. Here we present a theoretical model based on a full numerical solution of Maxwell-
Bloch equations suitable for the simulation of such devices. We show that our approach captures
the intricate interplay between four wave mixing, spatial hole burning, coherent tunneling and
chromatic dispersion which are present in free running QCLs. We investigate the premises
for the generation of QCL based terahertz combs. The simulated comb spectrum is in good
agreement with experiment, and also the observed temporal pulse switching between high
and low frequency components is reproduced. Furthermore, non-comb operation resulting in
a complex multimode dynamics is investigated.
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1. Introduction

Quantum cascade lasers (QCLs) promise to be efficient, cheap and compact generators of
frequency combs in the mid- and far-infrared portions of the electromagnetic spectrum. QCL
based combs in both spectral regions have been experimentally demonstrated [1–5], but their
spectral coverage has been limited to a fraction of their central frequency. From an application
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point of view, frequency combs with bandwidths spanning an octave are highly desirable, since
then the carrier offset frequency can be readily identified via a self-referencing scheme based on
heterodyne detection [6]. However, achieving comb stability over such a broadband frequency
range has proven to be difficult [7], namely due to the distorting effect of chromatic dispersion.
Nevertheless, also more narrowband QCL combs are useful for practical applications, as
demonstrated using the so-called dual-comb spectroscopy technique [8, 9].

The experimentally demonstrated QCL frequency combs are based on free running lasers [1–
3,7]. Here, high order nonlinear optical processes, in particular four-wave mixing (FWM), have
been identified as the main mode proliferation mechanisms that contribute to comb formation
[10, 11]. In contrast, it has been argued that group velocity dispersion (GVD) leads to unstable
multimode operation and thus limits the full exploitation of the gain bandwidth of the material
[12]. In the terahertz (THz) regime, the two widest comb generating devices demonstrated so
far have shown a strong variation of the beatnote’s linewidth with changing injection current,
indicating that comb operation comprises only a fraction of the whole dynamic range of these
lasers [2, 7].

This paper addresses fully time dependent simulations of QCL comb operation based on
the semi-classical Maxwell-Bloch (MB) laser equations [13]. Based on numerical solutions of
the MB equations, mode-locking in QCLs and the emergence of coherent optical instabilities
have been analyzed [14–19]. In those works, k-space dependence has not been included as it
significantly increases the computational load involved and limits the simulation time to only
short intervals [20]. A direct numerical solution of the MB equations is even much more intricate
for comb operation, since the optical field must be propagated over some 104 cavity round
trips to obtain converging results, which in turn poses strong requirements on the accuracy
and numerical efficiency of the simulation approach. This problem had been circumvented by
perturbatively solving the MB equations under the assumption of a discrete mode spectrum [11,
12], confirming FWM as the main comb forming mechanism and GVD as a major detrimental
effect. In this paper, we derive extended MB equations which also include coherent resonant
tunneling between the injector and upper laser level, as required for a realistic modeling of
QCL-based THz combs. These equations are coupled to self-consistent ensemble Monte Carlo
(EMC) carrier transport simulations which provide the non-radiative transition rates between the
energy levels, eliminating the need to use empirical electron lifetimes. Our simulation approach
considers the full transient dynamics of the system, directly solving the extended MB equations
without invoking any further assumptions. In this way, also regimes of non-comb or imperfect
comb operation can be analyzed, including cases where spectrally separated sub-combs exist or
only part of the spectral lines are phase-locked and participate in comb operation.

The paper is organized as follows: In Sec. 2 we introduce our theoretical model. This
approach is used in Sec. 3 to investigate the active region of a longitudinal optical (LO) phonon
depopulation THz QCL design used for frequency comb generation [2]. Here we focus on
effects relevant for frequency comb operation, in particular the gain characteristics, GVD and
FWM. Lastly, in Sec. 4 we present simulation results for comb operation and unstable behavior,
respectively, and show that the theoretical results agree well with experimental data.

2. Theoretical model

We base our investigations on the Maxwell-Bloch (MB) laser equations, which present a suitable
model for the description of light-matter interaction in microscopic systems. Specifically,
here we use extended Bloch equations to describe the optical transition between the upper
and lower laser level, additionally accounting for coherent resonant tunneling between the
injector and upper laser level to obtain a realistic description of the investigated THz QCL
design. We employ the standard rotating wave and slowly varying envelope approximations
to reduce the numerical load of the solution [13–16]. The effect of nonradiative scattering

                                                                                            Vol. 24, No. 20 | 3 Oct 2016 | OPTICS EXPRESS 23234 



mechanisms onto the carrier dynamics is captured phenomenologically via a rate equations
approach [18, 21, 22]. The level eigenenergies, dipole moments and anticrossing strengths are
obtained from a Schrödinger-Poisson solver [23]. The MB approach is coupled to a well-
established ensemble Monte Carlo (EMC) carrier transport simulation code for QCLs [24–27],
which provides the scattering rates. Thus, our approach is self-consistent and does not require
empirical parameters, with the exception of pure dephasing rates.

�

Fig. 1. Schematic diagram of a simple three-level LO-phonon depopulation THz QCL,
where the upper laser level is populated via resonant tunneling.

First, in order to introduce some notation, let us take a simple toy model for a resonant phonon
THz QCL, depicted in Fig. 1. In this configuration, we consider four relevant levels |1′〉, |3〉,
|2〉 and |1〉 which are the injector level, the upper and lower laser levels and the depopulation
level, which also serves as the injector level for the next period. The state |1′〉 couples to |3〉
via the anticrossing energy �Ω1′3, whereas the upper and lower laser levels interact via the
instantaneous Rabi frequency ΩL (t) = −ez32Ez (t)/�. Here, −ez32 = −e 〈3| ẑ |2〉 is the dipole
matrix element, Ez (t) is the electric field component along the growth direction z, and e is
the elementary charge. Lastly, we assume that the energy separation between |1′〉 and |3〉 is
Δ1′3 = �ε and that between the upper and lower laser levels Δ32 = �ω0.

In THz QCLs, resonant tunneling plays an important role especially for thick barriers
where the subbands involved in the electron transport have a small energy separation, which
particularly applies to the injection barriers of various QCL designs [28–30]. This effect is
usually treated in the tight-binding (TB) approximation [31], where the wave functions are
calculated for a single isolated period, and the electron subbands in adjacent modules are
simply obtained by adequate translation in energy and space by the module length Lp [28]. The
energetic coupling between levels spanning the intramodule barrier is modelled by including
the corresponding anticrossing energies in the Hamiltonian matrix [29,30]. In our case these are
the injector and upper laser level, with the coupling energy �Ω1′3. In this tight-binding basis,
the time evolution is governed by the von Neumann equation which, with phenomenologically
included scattering rates, reads

d
dt

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ1′1′ ρ1′3 ρ1′2

ρ31′ ρ33 ρ32

ρ21′ ρ23 ρ22

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

i
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
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⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

resonant tunneling and radiative coupling
︷���������������������������������������︸︸���������������������������������������︷
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤
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scattering rates matrix

. (1)
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In Eq. (1) the ρi j = 〈i | ρ̂ | j〉 denote the corresponding density matrix elements and we have set
the zero energy at (E1′ + E3)/2. Furthermore τ−1

i j
denotes the outscattering rate from level i to

level j, τi is the lifetime of level i with τ−1
i
=

∑
j�i τ

−1
i j

, and

τ−1
‖ i j =

1
2

(
1
τi
+

1
τj

)

+
1

τ
pure

i j

(2)

is the damping rate of the coherence between levels i and j, containing lifetime broadening and
a ”pure” dephasing time τpure

i j
[28].

Notice that in Eq. (1) we have omitted the time evolution related to state |1〉, because it
serves as the injector level for the next period, which allows us to eliminate it from the model
by employing ”periodic” boundary conditions in the scattering rates matrix. It is vital for the
simulation that these periodic boundary conditions are implemented correctly, because our
model is formulated in a manner which does not phenomenologically include the injection
current density J into the equations. Instead, we assume a periodic system where all carriers
that reach the depopulation level |1〉 are immediately re-injected into the system through level
|1′〉. In such a configuration the overall carrier density has to be conserved, which means that
the relation

∑
j dρ j j/dt = 0 has to be satisfied at all times. Then, the current injected into the

system is essentially equal to the current entering into the depopulation level, |1〉. From rate
equation analysis, the current density for a volume-averaged carrier concentration N is given
by [29]

J = −eNLp

⎛
⎜⎜⎜⎜⎜⎜⎝

3∑

j=2

ρ j j

τj1
+
ρ1′1′

τ1′1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3)

The coupling of the microscopic density matrix equations to the macroscopic Maxwell’s
equations is usually done via the incorporation of the polarization term in Maxwell’s equations
as the expectation value of the quantum mechanical dipole moment operator,

Pz = −NΓ Tr{ ρ̂eẑ} = −NΓ(ez32ρ32 + ez23ρ23) = −NΓez32(ρ32 + ρ23), (4)

where Γ is the spatial overlap factor between the optical field and the active region. Assuming
no free electric charges and also weak inhomogeneity, the optical field is governed by the wave
equation [13, 21]

⎛
⎜⎜⎜⎜⎝∂

2
x −

n2
0

c2
∂2
t

⎞
⎟⎟⎟⎟⎠ Ez =

1

ε0c2
∂2
t Pz , (5)

where x denotes the propagation direction, c is the speed of light in vacuum, n0 denotes the
refractive index of the material, and ε0 is the permittivity of free space. The full system of
equations which we developed and solve in practice, is presented in Appendix A, and the
numerical scheme is discussed in Appendix B.

3. Theoretical analysis of an LO phonon depopulation THz QCL with a strong
injector anticrossing

In this section we extend our three level model, outlined in Sec. 2, to simulate the QCL design
in [2]. This laser is based on a resonant LO phonon depopulation active region lasing at the
central frequency f0 ≈ 3.5 THz, and has been shown to produce a stable comb spectrum
containing more than 70 equidistant longitudinal modes in a free running regime of operation.
At optimum bias, field autocorrelation measurements indicate multimode lasing, and radio
frequency (RF) measurements produce a very strong and narrow beatnote with a minimum
reported full width at half-maximum (FWHM) linewidth of approximately 1.53 kHz, indicating
that at least part of the modes are phase-locked [1–3, 7]. Furthermore, a novel comb coherence
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detection technique, shifted-wave interference Fourier-transform (SWIFT) spectroscopy, has
been developed to prove the stability of the THz comb over a large number of round trips [32].
To correctly describe the device under test, we first determine operating regimes where the
”single resonant tunneling and single optical transition” assumption, made in Sec. 2, is justified.

Figure 2(a) illustrates the calculated wave functions at a bias of 11 kV/cm obtained with
the tight-binding approximation. From graphical inspection we see that there are in total five
relevant levels per period, which we will refer to, according to their assumed role, as |ULL〉
for the upper laser level, |LLL1〉 for the higher energy level from a pair of lower laser levels,
|LLL2〉 for the lower energy level from the same pair, |DEP1〉 for the higher energy level from
a doublet of depopulation levels, and finally |DEP2〉 for the lowest energy level. Furthermore,
since the structure is periodic, the depopulation levels from the previous period will be referred
to as |IN J1〉 and |IN J2〉, respectively.

(m
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Fig. 2. (a) The moduli squared of the wave functions of the THz QCL in [2] within the
tight-binding approximation. (b), The anticrossing coupling strengths between the pair
of injector levels, |IN J1〉 , |IN J2〉, and the upper laser level |ULL〉, computed via the
method outlined in [31]. (c), Dipole elements calculated for the same laser, obtained with
the extended basis Hamiltonian, Ĥext .

Figures 2(b) and 2(c) depict the calculated coupling strengths �Ωi j between the injector
states and the upper laser level for different biases, as well as the magnitudes of the dipole
matrix elements,

∣∣∣zi j
∣∣∣, between the upper laser level and the doublet of lower laser levels.

The anticrossing (AC) energies were calculated via the method described in [31], and the
numerical values were verified by diagonalization of the tight-binding Hamiltonian. Focusing
on bias values at around 11 kV/cm, our calculations show that there is almost perfect
energetic alignment between |IN J2〉 and |ULL〉, whereas |IN J1〉 and |ULL〉 are separated by
approximately ΔINJ1,ULL ≈ 4.3 meV (not shown in the figure). Even though the anticrossing
energies �ΩINJ1,ULL ≈ 1.18 meV and �ΩINJ2,ULL ≈ 1.38 meV are of comparable strength,
the strong resonance condition between the pair |IN J2〉, |ULL〉 enhances the tunneling
probability, i.e. reduces the tunneling time, between those levels [33], as compared to the
tunneling transition between |IN J1〉 and |ULL〉. This means that the majority of the tunneling
electrons will prefer the |IN J2〉 ↔ |ULL〉 transport channel and hence our model, which
includes only a single tunneling transition, ought to correctly capture the microscopic dynamics
of the real device. From dipole moment calculations in Fig. 2(c), we see that the optical
transition at 11 kV/cm is most likely to occur between the pair |ULL〉, |LLL1〉, and thus we can
assign the state |2〉 in our equations to be subband |LLL1〉 from the system under investigation.
Similarly, due to the discussion above, we can set the injector level in our reduced model, i.e.
|1′〉, to state |IN J2〉. Finally, we can map |3〉 to subband |ULL〉 . The remaining states |IN J1〉
and |LLL2〉 are then treated within a rate equations approach and included into the scattering
rates matrix by adequately extending Eq. (1).
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3.1. Gain and dispersion characterization

In order to extract the spectral gain profile as well as the strength of the chromatic dispersion
induced by the active region design, we have performed simulations emulating the THz time-
domain spectroscopy (THz-TDS) technique, often used for gain characterization of THz QCLs
[34–36].

We apply our model to a ring cavity configuration with length L = 2.5 mm and neglect spatial
hole burning effects which are not expected to play a role for this simulation. A weak unchirped
Gaussian pulse is propagated inside the cavity for one round trip of length L. At each time step
tn of our simulation, as well as at different points x j along the cavity length, we record the
electric field envelope f n

j
for further data processing. From this data the real and imaginary

parts of the refractive index can be calculated in a straightforward manner, as briefly discussed
below.

In a ring cavity, we have only forward propagating waves (no standing waves) and thus
the electric field can be written as E(x , t) = �{ f (x , t) exp [i(kc x − ωc t)]}, where f is the
(slowly varying) envelope function and kc and ωc are as defined in Appendix A. We will
denote the electric field of the injected seed pulse at the input facet of our cavity as Ein (t)
and the field of the detected pulse as Eout (t). Their Fourier transforms are Ein (ω) and
Eout (ω), with the angular frequency ω. The corresponding envelope functions are f in (t)
and fout (t), with the Fourier transforms Fin (ω) and Fout (ω), respectively. For a weak
seed pulse, the light-matter interaction is linear, and the active region can be described by
its complex refractive index n (ω) = n′ (ω) + in′′ (ω), with the amplitude gain coefficient
given by g(ω) = −n′′(ω)ω/c. The dependence between the seed and output fields is then
given by Eout (ω) = Ein (ω) exp

(
iωnL/c

)
, which corresponds to Fout (ω − ωc ) exp(ikcL) =

Fin (ω − ωc ) exp
(
iωnL/c

)
. From this, we obtain

n′(ω) =
c

Lω
∠{Fout (ω − ωc )/Fin (ω − ωc )} + ckc

ω
, (6)

n′′(ω) = −g(ω)c/ω = − c
Lω

ln{|Fout (ω − ωc ) |/|Fin (ω − ωc ) |}. (7)

Figure 3 shows the results from numerical THz-TDS simulations at a bias of 10.8 kV/cm for
the active region in [2] for a single round trip of the seed THz pulse. All relevant simulation
parameters, as well as the scattering times are given in Appendix C.
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Fig. 3. Simulated spectral gain profile (blue curve, left y-axis) together with the normalized
group velocity vgn0/c (red curve, right y-axis). (Left inset) The higher order phase
acquired by the test pulse. (Right inset) The second derivative of the wave number with
respect to the angular frequency.

Since our aim was to probe the unsaturated gain profile, for these numerical experiments we
used a weak Gaussian seed pulse with an instantaneous Rabi frequency amplitude of 0.5 ns−1
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and FWHM duration of 0.707 ps, corresponding to a FWHM bandwidth of 623 GHz for a
transform limited pulse. In Fig. 3 the blue curve illustrates the simulated spectral amplitude gain,
obtained from Eq. (7). We clearly can observe a pronounced splitting of the gain spectra into two
frequency lobes, one centred around 3.55 THz and another one around 4.21 THz. The red curve
in Fig. 3 depicts the frequency resolved group velocity, calculated from vg = [∂k (ω)/∂ω]−1

with k (ω) = n′(ω)ω/c, and normalized to the central frequency’s phase velocity c/n0. Due
to the strong resonances at 3.55 THz and 4.21 THz, the low and high frequency components
are delayed with respect to each other as vgn0/c approaches 0.9511 and 0.9326 for the low
and high frequency gain peaks, respectively, where this ratio depends on the strength of the
corresponding transition. The upper left inset of Fig. 3 depicts the calculated higher order phase
Ψ = k (ω)L (with the linear part removed) together with a third order polynomial fit to it, Ψfit ,
and shows that the dispersion relation within the spectral range of interest (i.e. from 3.5 THz to
4.2 THz) is approximately cubic. Lastly, the top right inset illustrates the second derivative of
the wave number with respect to frequency, i.e. k′′(ω), which is a measure of GVD.

From the above analysis we can conclude that even in the absence of bulk or waveguide
dispersion, the doubly peaked resonant nature of the transition will cause significant dispersion
in the cavity which is expected to deteriorate the comb performance. Here a question naturally
arises: ”How does the presence of strong chromatic dispersion impact the mode proliferation
process?” If the multimode behaviour of free running QCLs is due to FWM, as suggested
in [10, 11], then one would intuitively expect that such a high GVD will violate the phase
matching condition and thus yield this nonlinear process ineffective. However, from experiment
[2, 7], multimode operation of both mid-infrared and THz QCLs could be observed, even in
the presence of strong dispersion. To investigate further this question, we analyze the nature of
this mode generation mechanism and estimate the amount of phase mismatch induced by the
resonant transition.

3.2. Four wave mixing

We have conducted numerical experiments, similar to the THz-TDs technique, where we
pumped the 2.5 mm ring cavity laser, outlined above, with two frequencies ω1 and ω2 < ω1.
For 50 round trips we collected the signal and calculated the resulting power spectrum.

Figures 4(a)–4(c) illustrate the results from these simulations when the seed frequencies ω1

and ω2 were varied. In Fig. 4(a), we chose ω1 and ω2 to be separated by the free spectral
range, Δω = 2πc/ (n0L), and to reside within the high frequency lobe of the spectrum. We
can clearly observe the formation of side-modes separated by Δω, populating this whole
frequency lobe. Similarly in Fig. 4(b), our seed frequencies were chosen to be separated by
2Δω and again side-modes can be seen in the spectrum, however this time with mode spacing
of 2Δω. This kind of behaviour is a trademark of degenerate FWM described by susceptibilities
χ(−ωa ;ω1 , −ω2 , ω1) and χ(−ωs ;ω2 , −ω1 , ω2) [37], where the pump modes ω1 and ω2 mix to
produce a signal at the anti-Stokes and Stokes frequenciesωa andωs , respectively. This process
is schematically illustrated in Fig. 4(d). In Figs. 4(a) and 4(b), ω1,2 are distributed around
4.2 THz, and there is no activation of modes under the low-frequency lobe part of the spectrum.
Such dynamics differs from simulations at the same bias, but within a Fabry-Perot cavity, where
we observe lasing from both lobes of the gain, as will be discussed in the next section. This
means that in order for the FWM process to start, some kind of seeding mechanism is necessary.
Since in these experiments we considered a ring-cavity laser, multimode instabilities such as
spatial hole burning [15] were not included, and lasing only started in the lobe excited by the
seed. Lastly, Fig. 4(c) shows simulation results when both pump modes are chosen to be in
resonance with the corresponding gain peaks, and again we observe the familiar formation of
side modes due to FWM.

The phase mismatch for the anti-Stokes component of the degenerate FWM process, depicted
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Fig. 4. (a) Optical spectrum obtained from THz-TDs simulations when the seed
frequencies, ω1 and ω2, are separated by the free spectral range Δω. (b) Same as (a),
however this time ω1 − ω2 = 2Δω. (c) Optical spectrum from simulations where the
seed frequencies are distributed under both peaks of the spectral gain. (d) Schematic
representation of degenerate FWM [37], where two pump modes ω1,ω2 combine to
produce sidebands at frequencies ωa = 2ω1 − ω2 and ωs = 2ω2 − ω1.

in Fig. 4(a), is [37]
LΔk = [2k (ω1) − k (ω2) − k (ωa )] L, (8)

and similar for the Stokes component. For a Fabry-Perot laser of length L, we have Δω =
πc/ (n0L), and Taylor-expanding around ω1 up to third order in Δω yields, with ω2 = ω1 − Δω
and ωa = 2ω1 − ω2 = ω1 + Δω,

LΔk = −LΔω2 ∂
2k

∂ω2

∣∣∣∣∣∣
ω1

+O(Δω4) ≈ − 1
L

(
πc
n0

)2
∂2k

∂ω2

∣∣∣∣∣∣
ω1

. (9)

Plugging in typical values of L = 5 mm, n0 = 3.6 and ∂2
ω k ≈ 2 ps2/mm as an upper estimate for

GVD, we obtain a phase mismatch of L |Δk | = 0.0274 rad, which is negligible. This means that
despite significant dispersion present in the cavity, under the favourable conditions of broadband
gain, strong third order nonlinearity and some kind of multimode instability mechanism, such
lasers can potentially emit a multitude of longitudinal modes even in a free running regime of
operation, as reported in numerous experiments [1–3,7]. This, however, does not mean that such
GVD is not strong enough to hamper the comb formation over the full spectral bandwidth. We
will elaborate further in Sec. 4.1 and Sec. 4.2 on the detrimental effect of GVD onto the comb
coherence, where we simulate devices with and without taking care of GVD compensation.

4. Simulation of comb operation and comparison to experiment

In this section, we present simulation results for comb operation of the device in [2], now
considering counter-propagating waves in the Fabry-Perot cavity with a length L = 5 mm,
giving rise to spatial hole burning. Our simulations only use the device specifications and
well known material parameters as an input, with the exception of empirical dephasing times,
which were adapted from [30]. Again, the electron wavefunctions and eigenenergies are
computed with a Schrödinger-Poisson solver, and the carrier lifetimes are extracted from Monte
Carlo carrier transport simulations. The used model parameters are listed in Appendix C. We
propagate over ∼15000 round trips to obtain results close to steady state.
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4.1. Frequency domain

In Fig. 5, we compare the calculated spectra and beatnotes from simulations without dispersion
compensation, Figs. 5(c) and 5(d), and with dispersion compensation, Figs. 5(e) and 5(f),
to experimental data, Figs. 5(a) and 5(b). Here, the simulation bias is set slightly below
resonance, i.e., at 10.8 kV/cm. In both the dispersion compensated and uncompensated case, we
observe reasonable agreement with the experimental optical power spectra, Fig. 5(a), however
substantial differences arise when we consider the corresponding beatnotes.
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Fig. 5. Optical power spectra (left column) and beatnotes (right column) from experiment
and simulations of the device in [2]. (a), (b) Experimental data for the dispersion
compensated laser, at driving current of 0.9 A. Simulation results without dispersion
compensation (c)–(d) and with dispersion compensation (e)–(f). The experimentally
detected beatnote in (b) has a FWHM of approx. 0.553MHz, whereas the simulated
beatnote in (f) has a resolution limited FWHM of 1.66MHz. The strongest peak in (d)
has a FWHM of 3.04 MHz.

Let us first discuss the simulation results in Figs. 5(c) and 5(d). While experimental data show
a strong and narrow beatnote with an FWHM linewidth of approximately 0.55 MHz, Fig. 5(b),
in Fig. 5(d) we observe a multi-beatnote signal distributed around 8.14 GHz. This deviates from
the experimental value of around 6.8 GHz because the experimental implementation of GVD
compensation in the cavity results in an increased effective cavity length. In the RF spectrum
of Fig. 5(d), we can distinguish two peaks, one at 8.149 GHz and another at 8.151 GHz, both
with a FWHM of approximately 3 MHz (Fourier transformation of 104 round trips yields a
frequency resolution of 0.83 MHz, where at least two frequency intervals are required to resolve
the peak). From the group velocity delay plot in Fig. 3 as well as from the spectra in Fig. 5(c)
we can deduce that since the high frequency lobe’s spectral components carry more power
and have lower group velocity vg , the stronger peak in the beatnote belongs to those frequency
components, whereas the weaker one is associated with the lower frequency modes. This means
that there ought to be two co-propagating pulses, albeit with a different vg , which interfere in
the beatnote measurement to produce the chaotic RF spectrum in Fig. 5(d). The amount of noise
in this non-comb regime of operation can be therefore traced mainly to the timing jitter induced
by the difference in group velocities of those pulses. This will be elaborated further below, when
we consider our results in the time domain.

The situation drastically changes when we employ dispersion compensation in our
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simulations. To cancel the accumulated higher order phase components, after each round trip
we Fourier-transform the electric field envelope, subtract from the resulting phasor the phase Ψ,
extracted analogously to the simulation in Fig. 3, and inverse Fourier-transform the result. The
obtained spectral power density and RF spectra are plotted in Figs. 5(e) and 5(f). We see that
such a procedure equilibrates the difference in the group velocities of different lasing modes,
which results in a single, strong and narrow beatnote with a linewidth corresponding to our
numerical frequency resolution, as expected from the experimental results for comb operation
in Fig. 5(b).

4.2. Time domain

In [32] it was shown that the strong injector anticrossing leads to a splitting of the emitted comb
spectra in frequency domain and to an effect which was coined as ”temporal hole burning” in
time domain. To compare our simulation results to experiment, we applied a low-pass and high-
pass finite impulse response filter to the simulated electric field, in order to separate the low
and high frequency lobe components of the signal, respectively. Since the experimental design
is dispersion compensated, we first consider this case in our simulation, corresponding to the
results in Figs. 5(e) and 5(f). The smoothed experimental and simulated instantaneous intensity
are depicted in Figs. 6(a) and 6(b), respectively, with a smoothing length of 10 ps in experiment
and 3 ps in simulation.
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Fig. 6. Time domain separation of the optical field into high and low frequency lobe
components. (a) Measured intensity over time from [32] for the same THz comb device
as in [2], driven with 0.9 A current. (b) Simulated intensity over time for a dispersion
compensated QCL evolved for ∼15000 round trips. (c) Time dependence of the electron
populations in the injector and upper laser level ( i.e. ρ1′1′ , ρ33) as well as the dressed
states (i.e. ρ++, ρ−−).

We note that when the population dynamics is extremely fast, memory effects become
relevant, which can be taken into account by using a non-Markovian approach [38,39], however
at the cost of considerably increased numerical complexity. Since the modeling of frequency
comb operation requires simulations over many 1000 round trips as discussed above, we rely
on our model Eqs. (13)–(15) (see Appendix A). This approach already yields decent agreement
between experiment and simulation as both data demonstrate a pulse switching behaviour
between the high and low frequency lobe components of the spectra. The high frequency lobe
pulse (blue curve) has a longer time duration than the low lobe signal (red curve). We believe this
results from the difference in relative strengths of the corresponding spectral lobes, as the high
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lobe components experience more gain, as shown in Fig. 3. Furthermore, in the experimental
trace an additional oscillatory substructure emerges, the reason for which remains to be clarified.
However, a possible explanation could be the presence of windowing effects of the Fourier
transform spectrometer.

The dependence of the relative strengths of both lobes on the bias has already been discussed
in [30], however its implications on the time domain behaviour of the laser were not considered
in greater detail. To summarize the conclusions in [30], the inclusion of a strong injector
anticrossing leads to a splitting of the injector |1′〉 and upper laser level |3〉 into a doublet
of so-called ”dressed states”. The higher energy level is denoted by |+〉 (also known as the
”anti-symmetric” state), and the other level by |−〉 (i.e. the ”symmetric” state). These states
are separated by approximately the anticrossing energy 2�Ω1′3 (depending on the detuning),
which can be readily confirmed from experiment [2]. The relative radiative coupling strength of
states |+〉 and |−〉 with the lower laser level depends on the detuning from resonance. Assuming
low intracavity intensity, it can be shown that below the resonant bias, i.e., for �ε < 0, the
high frequency lobe of the gain dominates the transition, whereas above resonance the low lobe
does [30]. As our simulations and experimental data show, this results in a longer high frequency
pulse.

Figure 6(c) displays the calculated density matrix elements ρ33, ρ++, ρ−− and ρ1′1′ as a
function of time. For all four terms, we observe dampened Rabi-oscillations occurring upon
a pulse switching event, which manifest the intramode beating of the high and low lobe. The
period of these oscillations is approximately 2.84 ps, giving us a frequency of 350 GHz, which
is namely the beat frequency between the high and low lobes of the dispersion compensated
laser’s spectrum (see Fig. 5). We can also clearly observe that whenever the high frequency
lobe lases, state |+〉 gets more strongly depleted, whereas whenever the low lobe is switched on,
state |−〉 saturates.
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Fig. 7. Simulated high (blue) and low (red) frequency pulses for a numerically dispersion
compensated (left column) and an uncompensated (right column) THz QCL. Data from
round trip 4615-4618 (top) and 4710-4713 (bottom) are shown.

To illustrate the implications of the existence of co-propagating high and low frequency lobe
pulses in the presence of GVD, the simulated instantaneous intensities with (left column) and
without (right column) dispersion compensation are shown in Fig. 7 for different temporal
intervals. Temporal hole burning, or pulse switching, is clearly present in both cases. With
dispersion compensation, the periodicity is preserved over many round trips, as can be seen
by comparing the intensity traces for the two displayed temporal intervals. By contrast, in the
presence of GVD the high and low frequency lobes constantly compete with each other, which
leads to a complex non-periodic temporal shape of the signal. Thus, while the signal from a low
GVD QCL has a minimal timing jitter, which results in a narrow and strong beatnote, the one
from a dispersion uncompensated device operates in a multi-pulse regime with a complicated
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temporal and spectral profile, and thus never quite reaches a steady state. From this it follows
that coherent comb cannot be formed over the full spectrum, but either no comb or sub-combs
can be observed [3, 7].

One can naturally extrapolate these conclusions to a situation where the effects of material
and waveguide dispersion add to a much more complicated dispersion profile, as compared to
the one in Fig. 3. In such a case, the competition between electric field signals propagating with
various different group velocities will lead to a chaotic and unstable beatnote, characteristic for
multimode non-comb behaviour of QCLs [3, 7].

Lastly, we would like to add that in our simulations, the temporal hole burning effect could
be reproduced at different values of the applied bias ranging between 10.7 and 11.4 kV/cm
(not shown here). For lower or alternatively higher biases, lasing occurred only in the dominant
frequency lobe, due to the large difference between the corresponding components of the gain,
and thus no pulse switching could be observed. Also we have found that the temporal overlap
increases as the spectral gap between the high and low lobes is decreased, i.e. with decreasing
anticrossing energy �Ω1′3, as well as with broadening of the radiative transition’s linewidth.

5. Conclusion

We have presented a theoretical model suitable for the simulation of THz QCLs in comb and
non-comb regimes of operation, based on the full numerical solution of the Maxwell-Bloch
equations in rotating wave approximation. We have shown that our approach correctly captures
the complicated dynamics between four wave mixing, coherent tunneling and spectral gain
splitting, group velocity dispersion, as well as spatial hole burning, as it delivers simulation
results in good agreement with experimental data. We have used this model to characterize the
spectral gain profile and the corresponding group velocity delay, and to investigate the FWM as
the dominant comb proliferation mechanism. Simulations of comb operation yielded a spectral
comb shape in good agreement with experiment, and the temporal switching behaviour between
the high and low frequency components reported in experiment could also be reproduced.
Furthermore, we have demonstrated that in contrast to earlier theoretical approaches our model
can also capture non-ideal comb operation and transitions between comb and non-comb oper-
ating regimes.

A. Maxwell-Bloch equations for a Fabry-Perot resonator

Let us consider a Fabry-Perot resonator of a certain length L, and employ the rotating wave
(RWA) and the slowly varying envelope approximations (SVEA) [13, 15]. The optical field
inside the cavity can be written as a superposition of forward and backward propagating waves

Ez (x , t) =
1
2

{
f+(x , t) exp [i(kc x − ωc t)] + f− (x , t) exp [−i(kc x + ωc t)] + c.c

}
, (10)

where ”c.c.” denotes the complex conjugate of the preceding expression, the + and − signs
specify the forward/backward propagating waves’ envelopes, respectively, and ωc and kc are
the field’s carrier frequency and wave number, related by kc = n0ωc/c. Since the superposition
of two counter-propagating waves forms a standing wave, this will lead to the formation of an
inversion grating along the propagation direction x, a phenomenon also known as spatial hole
burning. Thus for the diagonal elements of the density matrix we make the following ansatz

ρii (x , t) = ρ
0
ii (x , t) + ρ

+
ii (x , t) exp (2ikc x) + ρ−ii (x , t) exp (−2ikc x) , (11)

where ρ+
ii
= (ρ−

ii
)∗ are the inversion grating’s amplitudes [14]. Lastly, we decompose the

coherences of the density matrix as
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ρ32(x , t) = η+32(x , t) exp [i(kc x − ωc t)] + η−32(x , t) exp [−i(kc x + ωc t)] , (12a)

ρ1′2(x , t) = η+1′2(x , t) exp [i(kc x − ωc t)] + η−1′2(x , t) exp [−i(kc x + ωc t)] , (12b)

ρ1′3(x , t) = ρ0
1′3(x , t) + ρ+1′3(x , t) exp (2ikc x) + ρ−1′3(x , t) exp (−2ikc x) . (12c)

Notice that Eqs. (12a) and (12b) follow the electric field ansatz since the corresponding
transition energies are in close resonance with the optical field. In contrast, the ansatz Eq. (12c)
is chosen in analogy to Eq. (11) for the diagonal elements since the term ρ1′3 is expected to
oscillate only slowly due to the small energetic spacing between subbands 1′ and 3.

Finally, plugging Eqs. (10)–(12) into Eqs. (1), (4) and (5) and invoking the rotating wave and
slowly varying amplitude approximations, we obtain our model in its final form:

1. Propagation equations

n0

c
∂t f± ± ∂x f± = −i

NΓez32kc
ε0n2

0

η±32 − l0 f± , (13)

2. Population densities

dρ0
1′1′

dt
= iΩ1′3

(
ρ0

1′3 − ρ0
31′

)
+

(
1
τ31′
+

1
τ31

)

ρ0
33 +

(
1
τ21′
+

1
τ21

)

ρ0
22 −

ρ0
1′1′

τ1′
, (14a)

dρ+1′1′

dt
= iΩ1′3

(
ρ+1′3 − ρ+31′

)
+

(
1
τ31′
+

1
τ31

)

ρ+33 +

(
1
τ21′
+

1
τ21

)

ρ+22 −
(

1
τ1′
+ 4k2

cD

)

ρ+1′1′ ,

(14b)

dρ0
33

dt
= iΩ1′3

(
ρ0

31′ − ρ0
1′3

)
+ i

ez32

2�

(
f ∗−η−32 + f ∗+η+32 − c.c.

)
+

1
τ1′3
ρ0

1′1′ +
1
τ23
ρ0

22 −
ρ0

33

τ3
,

(14c)

dρ+33

dt
= iΩ1′3

(
ρ+31′ − ρ+1′3

)
+ i

ez32

2�

[
f ∗−η+32 − f+(η−32)∗

]
+
ρ+1′1′

τ1′3
+
ρ+22

τ23
−

(
1
τ3
+ 4k2

cD

)

ρ+33 ,

(14d)

dρ0
22

dt
= −i

ez32

2�

(
f ∗−η−32 + f ∗+η+32 − c.c.

)
+

1
τ1′2
ρ0

1′1′ +
1
τ32
ρ0

33 −
ρ0

22

τ21
, (14e)

dρ+22

dt
= −i

ez32

2�

[
f ∗−η+32 − f+(η−32)∗

]
+

1
τ1′2
ρ+1′1′ +

1
τ32
ρ+33 −

(
1
τ2
+ 4k2

cD

)

ρ+22 , (14f)

3. Coherence terms

dρ0
1′3

dt
= −iε ρ0

1′3 + iΩ1′3

(
ρ0

1′1′ − ρ0
33

)
+ i

ez32

2�

(
f ∗+η+1′2 + f ∗−η−1′2

)
− τ−1

‖1′3ρ
0
1′3 , (15a)

dρ±1′3

dt
= −iε ρ±1′3 + iΩ1′3

(
ρ±1′1′ − ρ±33

)
+ i

ez32

2�
f ∗∓η±1′2 −

(
τ−1
‖1′3 + 4k2

cD
)
ρ±1′3 , (15b)

dη±32

dt
= i (ωc − ω0) η±32 + i

ez32

2�

[
f± (ρ0

33 − ρ0
22) + f∓ (ρ±33 − ρ±22)

]
− iΩ1′3η

±
1′2 − τ−1

‖32η
±
32 ,

(15c)

dη±1′2

dt
= i (ωc − ω0 − ε ) η±1′2 + i

ez32

2�

(
f± ρ0

1′3 + f∓ ρ±1′3

)
− iΩ1′3η

±
32 − τ−1

‖1′2η
±
1′2. (15d)
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Notice that in Eq. (13) we have phenomenologically added a linear amplitude loss coefficient
l0, and in Eqs. (14b), (14d), (14f) and (15b) a diffusion term 4k2

cD describing the diffusion
rate at which carriers diffuse away from peaks of the population grating. Here D denotes the
diffusion constant, which for GaAs/AlGaAs systems is 46 cm2/s [19, 40]. The fields f± in Eq.
(13) satisfy the boundary conditions f+ (0) = r f− (0) and r f+ (L) = f− (L) [14], where we set
the reflection coefficient r = 1 and instead include mirror outcoupling into the loss coefficient
l0. In Appendix B, the numerical methods used to solve Eqs. (13)–(15) are briefly discussed.

B. Numerics

Eqs. (13)–(15) comprise a system of two partial and thirteen ordinary differential equations,
which we solve numerically. The field propagation equations, Eq. (13), are a pair of
inhomogeneous hyperbolic equations the accurate numerical solution of which is far from trivial.
From the area of computational fluid dynamics [41], it is known that a simple central differences
discretization scheme for Eq. (13) will be highly unstable due to the introduction of strong
numerical dispersion near sharp edges or discontinuities of the solution. A finite difference
scheme that does not generate such spurious oscillations is called monotonicity preserving [41]
and its usage is essential for the correct interpretation of simulation results, especially when
one tries to quantify the amount of physical dispersion present. Without getting too much into
detail, we present a second order linear finite difference discretization scheme, possessing the
monotonicity preserving property (in the case when η± ∝ f±), for the model equation

∂f±
∂t
= ∓c

∂f±
∂x
+ η± (x , t) + k f± . (16)

We take an equidistant spatio-temporal grid with grid size Δx and time step Δt and set the
values of the grid variables at spatial point xm = mΔx and time tn = nΔt as f± (m, n), where
the ± index denotes the forward/backward propagating envelopes, respectively, and η± denotes
the corresponding source terms. The time stepping scheme we use is based on a second order
upwind discretization, first introduced by Risken and Nummedal [42], and is given by

f± (m, n + 1) = f± (m ∓ 1, n) + Δt
[
η± (m, n) + k f± (m, n)

]

+
Δt2

2

{[
∂η±
∂t

]n

m

∓ c

[
∂η±
∂x

]n

m

∓ 2kc

[
∂f±
∂x

]n

m

+ kη± (m, n) + k2 f± (m, n)

}

,

(17)

where the time step is chosen as Δt = Δxn0/c, with c/n0 being the velocity of light in
the medium. The evaluation of the time derivative of η± (x , t) can be computed analytically
from the density matrix equations, Eq. (15). The terms in rectangular brackets,

[
∂η±/∂x

]n
m

and
[
∂f±/∂x

]n
m , can be computed via forward/backward finite differences, depending on the

propagation direction of the field.
The density matrix equations, Eqs. (14) and (15), form a system of ordinary differential

equations and the usage of any out of the box numerical solver ought to suffice. In our experience
a suitable method which is high-order accurate and also preserves the normalization property of
the density matrix, i.e. Tr(ρ) = 1, is given by the fifth order linear multi-step Adams-Bashforth
method.

C. Simulation parameters
In Table 1 we summarize the parameter set used for our simulations and in Table 2, the scattering 
rates between each pair of the active region subbands calculated with our ensemble Monte Carlo
simulation code [21] is shown. The code includes all relevant scattering mechanisms reported 
to play a role in quantum cascade lasers, including longitudinal optical phonons, acoustic
phonons, interface roughness and impurity scattering as well as electron-electron scattering. 
The calculated rates include all these mechanisms and are presented in units of ps−1.
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Table 1. Simulation parameters for a THz QCL, modelled after the device in [2]. The
modal overlap factor and the facet reflectivities are selected based on [43] for a metal-
metal waveguide with thickness 10 μm and width of 20 μm.

Parameter Symbol Value
Avg. carrier density N 5.6×1015 cm−3

Overlap factor Γ 0.9
Linear amplitude loss l0 11 cm−1

Dipole matrix element ez32 4.0 nm ×e

Refractive index n0 3.6
Diffusion constant D 46 cm2/s
Left mirror reflect. RL 0.8
Right mirror reflect. RR 0.8
1’→3 pure deph. time τ

pure
1′3 0.6 ps

3 →2 pure deph. time τ
pure
32 1 ps

1’→2 pure deph. time τ
pure
1′2 1 ps

3 ↔ 2 resonance energy Δ32 15.82 meV
1’↔ 3 detuning energy Δ1′3 -0.43 meV
1’↔ 3 anticrossing �Ω1′3 -1.3447 meV

Table 2. Total scattering rates between each pair of relevant subbands of the device in [2]
for a bias of 10.8 kV/cm. The rates are presented in ps−1.

INJ1 INJ2 ULL LLL1 LLL2 DEP1 DEP2
INJ1 0 0.8179 0.0200 0.0016 0.0007 0.0025 0.0029
INJ2 0.4906 0 0.0451 0.0016 0.0007 0.0024 0.0031
ULL 0.0471 0.0894 0 0.1252 0.1101 0.0503 0.0464

LLL1 0.0329 0.0425 0.0794 0 0.4949 0.7787 0.6196
LLL2 0.0214 0.0280 0.0357 0.2810 0 1.0196 1.0960
DEP1 0.0026 0.0037 0.0029 0.0031 0.0042 0 0.8179
DEP2 0.0017 0.0026 0.0018 0.0013 0.0042 0.4906 0
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