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ABSTRACT

Due to their broad spectral bandwidth and superior temperature performance, resonant phonon quantum cas-
cade laser (QCL) designs have become the active-region of choice for many of the leading groups in terahertz
(THz) QCL research. These gain media can vary substantially in the number of wells and barriers as well as their
corresponding thicknesses, but all such structures employ a common resonant phonon lower laser level depopu-
lation scheme and a resonant tunneling mechanism for efficient current injection into the upper laser level. The
presence of a strong anticrossing between the injector and upper laser level leads, under the right conditions, to
a pronounced splitting of the emission spectra into high and low frequency lobe components around some central
transition frequency. This spectral hole burning effect also manifests itself in the time domain as a form of pulse
switching between signals corresponding to the two lobes of the split gain, as it has already been experimentally
observed. This process was termed as a form of temporal hole burning (THB), which next to spectral and spatial
hole burning, completes the plethora of dynamic "hole burning" phenomena encountered in QCLs. In this work,
we investigate the temporal dynamics of THz QCLs with a strong injector anticrossing via numerical solution of
the Maxwell-Bloch laser equations. Our simulation results show remarkable agreement with experiment and we
further outline the development of a theoretical model which intuitively explains this effect.

Keywords: Quantum cascade lasers, frequency combs, ultrafast phenomena, spectral hole burning, temporal
hole burning

1. INTRODUCTION

Quantum cascade lasers (QCLs) are a relatively new semiconductor type of lasers based on electron transitions
inside a multiple quantum well active region heterostructure. The lasing frequencies in these devices are deter-
mined by active region design, and not by the band-gap of the material, which makes them a promising source
of mid- and far- infrared radiation. Furthermore, stemming from their intrinsicly broad bandwidth, QCLs have
shown great potential as a compact and cheap source of frequency combs in these spectral regions.[1]–[3] This has
opened up a variety of exciting new applications of QCLs, such as high precision optical spectroscopy and metrol-
ogy, chemical fingerprint detection and others, due to the fact that many important molecules have ro-vibrational
eigenmodes in the THz as well as the mid-infrared. Already several "proof-of-concept" frequency comb utilization
experiments have been demonstrated, based on the so called "dual comb" spectroscopy technique.[4], [5]

In [1] a THz QCL frequency comb was demonstrated, consisting of more than 70 equidistantly-spaced lon-
gitudinal modes, spanning approximately 14% of the central frequency. Apart from the obvious interest in this
device due to its superior comb performance, it also exhibited other very intriguing properties which deserve
a more detailed study. For example, a hole was observed in the signal’s spectrum, which separated the lasing
frequencies into components distributed around 3.4 THz and 3.8 THz, to which we will refer as the low and high
frequency lobes, respectively. Such a spectral hole burning was attributed and later confirmed by simulation[6] to
be due to the strong tunneling coupling between injector and upper laser level of the active region. Furthermore,
a subsequent detailed experimental analysis[7] showed that the prevalent frequency lobe strongly depends on the
applied injection current, with the low and high frequency transitions dominating respectively at low and high
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current densities.[7] Additionally, a Monte-Carlo based algorithm in combination with a novel comb coherence
detection technique, the so called shifted wave interference Fourier transform spectroscopy or SWIFTS,[8] was
used in order to reconstruct the instantaneous intensity and frequency of the signal.[7] The results displayed an
intriguing pulse switching behaviour, which was termed "temporal hole burning" (THB) by the authors, and is
at the main focus of this article.

The observed THB effect can be characterized by a transient switching between signals corresponding to the
high and low frequency lobes. In Fig. 1 we have plotted the measured optical spectrum, the smoothed out
instantaneous intensity, I(t), and instantaneous frequency, ν(t), of the low and high frequency lobes. The data
was obtained via the method described in [7] at 0.9 A injection current, where the laser was shown to operate in
a stable comb regime.[1] The lines in Fig. 1b and Fig. 1c denote the time-averaged values over a window of 10
ps, whereas the shaded areas delineate regions at a single standard deviation from the corresponding mean.
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Figure 1: Measured a Intensity spectrum, b instantaneous intensity and c instantaneous frequency,
emitted by the device in [1], at an injection current of 0.9A.

The difference in both signals’ time duration can be easily explained by looking at the spectrum and remem-
bering Parseval’s theorem: the blue lobe contains more modes and hence it stores more energy which, under
the condition that both pulses have approximately the same peak intensity, requires it to have more prolonged
temporal shape. Useful information about the nature of those signals can be extracted from the plots of the
instantaneous frequency. It has already been noted[7] that while ν(t) is approximately constant for the red pulse,
which indicates that the signal is transform limited, the instantaneous frequency of the blue lobe looks much
more strongly modulated, which is a feature of a frequency modulated signal. An interesting question to consider
is: "Why is the difference between the optical spectra of the high and low frequency lobe manifest in the pulse
duration rather than the amplitude?". We believe that this might be due to the balance between the ultrafast
gain recovery dynamics of the device and the Four Wave Mixing (FWM) processes which produce the multimode
spectrum. In Refs. [9]–[11] it has been confirmed by theory that FWM in lasers with fast gain recovery and
low dispersion could produce a comb, which contains most of the spectral information in the variation of its
phase rather than the amplitude. In the ideal case, this would mean that the device will operate as a frequency
modulated laser producing almost constant instantaneous intensity, but a periodically varying instantaneous
frequency.
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2. SIMULATION RESULTS
In order to investigate the temporal hole burning effect, we model the laser in [1] by coupling the Schrödinger-
Poisson/ensemble Monte Carlo method with a Maxwell-Bloch simulation code.[6] The gain medium is a 5-well
resonant phonon THz QCL, employing resonant tunneling for current injection. With the aim to introduce some
notation, consider a prototypical THz QCL design, schematically illustrated in Fig. 2a. In this configuration,
the injector state is denoted as |c〉, the upper laser level as |b〉 and the lower laser level as |a〉. Due to the close
energetic alignment of |b〉 and |c〉, which we will assume to be }ε � 1 meV, the states anticross with coupling
energy }Ωcb. We also assume that the energy of the optical, i.e. a ↔ b, transition is equal to ~ω0. The strong
coupling between injector and upper laser level leads to a level splitting of the states |b〉 and |c〉 into a doublet
of dressed or delocalized states |+〉 and |−〉, which span the intramodule barrier, Fig. 2b, and are separated by
the energy δE = }

√
ε2 + 4Ω2

cb, which could be well in the range of hundreds of GHz.

Electron states in 

the extended basis

�Electron states in the 

tight binding basis

�

Figure 2: a Schematic representation of a three level resonant tunneling system in the tight-binding
basis. b Schematic representation of the system in a in the delocalized, i.e. extended, basis.

The dipole moment of the states |b〉 and |a〉 in the tight binding basis is transferred to a dipole interaction
between both dressed states, |±〉 , and |a〉, in essence producing a doublet of upper laser levels, Fig. 2b. If
the splitting energy δE is sufficiently large and the linewidth of the b↔ a transition is sufficiently narrow, this
leads to a splitting of the gain into a low and a high frequency lobe, with angular frequencies ωLF and ωHF ,
symmetrically distributed around ω0.[12] We will start by introducing the equations of motion (EOM) in the
tight-binding picture, which provides the framework for our simulation model.[6]

Neglecting for the time being all phenomenological terms and including the interaction with the electric field
within the electric dipole approximation, as well as the resonant tunneling coupling via the energy }Ωcb, the
generator of time evolution of the system, depicted in Fig. 2a, is the Hamiltonian operator

Ĥ = ~(ε+ ω0)σ̂c,c + ~ω0σ̂b,b + (~Ωcbσ̂c,b + q0dbaEzσ̂b,a +H.c.). (1)

We have implicitly assumed that the semiconductor growth direction of the QCL is along the z-axis and thus Ez

is the only component of the field coupling to the atomic system. The symbol dba = 〈b| ẑ |a〉 denotes the dipole
matrix element between states |b〉 and |a〉, where ẑ is the z-component of the position operator. Also σ̂i,j = |i〉 〈j|
is the atomic projection operators, "H.c" the Hermitian conjugate and we have set the zero energy to be equal
to the energy of the lower level Ea = 0.

Within the Markovian approximation,[13] the time evolution of the density operator ρ̂ is governed by the von
Neumann equation with phenomenologically included dissipation term G(ρ̂) and is given by

dρ̂

dt
= − i

~
[Ĥ; ρ̂] +G(ρ̂), (2)

where [·; ·] is the usual quantum mechanical commutator. Here the term G(ρ̂) is included to model the loss of
coherence of the system due to interaction with the environment and is written within a standard scattering rates
approach.[14] In our simulations, those rates are not taken as empirical values, but they are rather calculated
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with our ensemble Monte Carlo code,[15] which incorporates all incoherent scattering mechanisms shown to be
relevant for quantum cascade lasers.[16]–[18]

All simulation parameters, are as in Ref. [6], with the exception of the pure dephasing time for the lasing
transition, which was chosen to be 2 ps, i.e. twice the value in Ref. [6], in order to produce results with more
pronounced spectral splitting. Also, we have evolved the system for 1200 round trips. To extract the high and low
frequency signals, we applied a high and low pass finite impulse response (FIR) filters of sufficiently high order,
respectively, onto the total real electric field. Then, we used the Hilbert transform onto the result and, finally,
from the calculated analytic signals, we extracted the envelopes and instantaneous frequencies. The simulation
results are plotted in Fig. 3.
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Figure 3: a Intensity spectrum, b instantaneous intensity, c instantaneous frequency and d level popu-
lations from simulations at 10.8 kV/cm applied bias.

We see that our simulations qualitatively reproduce the experimental results in Fig. 1 quite well. We do
observe the clear pulse switching behaviour as well as the periodic variation in the instantaneous frequency ν(t).
For the latter, we see that whenever either lobe is transiently switched off, the corresponding ν(t) is very noisy
as it contains large uncertainty and is practically ill-defined.[8] We also notice that in exact agreement with
experiment the high frequency lobe’s time signal has longer duration as compared to the low frequency lobe’s
signal. The additional substructure present in the blue lobe of Fig. 1b is however absent in our simulations. We
are still unable to trace its origin.

Another important observation worth discussing is the apparent depletion of the carrier density in the |+〉
and |−〉 states, i.e. ρ++ and ρ−−, whenever the high and low frequency lobes, respectively, are lasing. At the
same time the total number of electrons in the pair of delocalized states remains approximately constant, as can
be seen from the plots. In Sec. 3 we will show that this is due to the fact that, under ideal conditions, the
three level system, schematically represented in Fig. 2b, can be reduced to a two level such involving only the
population densities of the anticrossed states.
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3. THE QUASI-TWO-LEVEL SYSTEM

The fact that the original system’s Hamiltonian is non-diagonal in the tight binding basis, introduces a new set
of eigenstates with split eigenvalues corresponding to the high and low frequency lobes. One can obtain the
delocalized basis states |+〉 and |−〉 from the tight binding states via the unitary transform

|+〉 = cos θ |c〉 − sin θ |b〉 ,
|−〉 = sin θ |c〉+ cos θ |b〉 . (3)

The eigenenergies are given by E± = }ω± = ~(ω0 + ε/2) ± ~
√
ε2 + 4Ω2

cb/2, and the expansion coefficients are
computed from tan θ = −2Ωcb/[ε+ (ε2 + 4Ω2

cb)
1/2].

Within the delocalized basis picture the observed pulse switching behaviour has a very intuitive and simple
explanation. If we apply the unitary transform given by Eq. (3) onto the tight binding Hamiltonian in Eq. (1)
and also employ the rotating wave approximation, the Hamiltonian and the statistical operator can be cast in
the form

HRWA =

~(ω+ − ω0) 0 q0d+af/2
0 ~(ω− − ω0) q0d−af/2

q0d+af
∗/2 q0d−af

∗/2 0

 , ρRWA =

ρ++ ρ+− η+a

ρ−+ ρ−− η−a

ηa+ ηa− ρaa

 . (4)

In Eq. (4) we have made the familiar ansatz decomposing the electric field (assuming unidirectional propagation)
Ez(x, t) = <{f(x, t)ei(k0x−ω0t)} into the product of an envelope function f(x, t) and a carrier wave with central
angular frequency ω0 and wave number k0 = n0ω0/c0, where n0 is the refractive index at the central frequency
and c0 the velocity of light in vacuum. The symbols d+a = 〈+| ẑ |a〉 = − sin θdba and d−a = 〈−| ẑ |a〉 = cos θdba,
denote the corresponding dipole moments, η±a = ρ±ae

−i(k0x−ω0t) are the slowly varying coherences and f∗

denotes the complex conjugate of the envelope.

In this basis, the von Neumann equation reads (neglecting dissipation terms)

dρ++

dt
= i

q0d+a

2~
(f∗η+a − fη∗+a), (5a)

dρ−−

dt
= i

q0d−a

2~
(f∗η−a − fη∗−a), (5b)

dρaa
dt

= −i q0d+a

2~
(f∗η+a − fη∗+a)− i q0d−a

2~
(f∗η−a − fη∗−a), (5c)

dρ+−

dt
= −i(ω+ − ω−)ρ+− − i

q0d+a

2~
fηa− + i

q0d−a

2~
f∗η+a, (5d)

dη+a

dt
= −i(ω+ − ω0)η+a + i

q0d+a

2~
f(ρ++ − ρaa) + i

q0d−a

2~
fρ+−, (5e)

dη−a

dt
= −i(ω− − ω0)η−a + i

q0d−a

2~
f(ρ−− − ρaa) + i

q0d+a

2~
fρ−+. (5f)

Now, if we assume that f = f∗, i.e. the total envelope is real, ε ≈ 0 and also that d+a ≈ d−a = d, it turns out
that we can reduce the 3−level delocalized state system into a quasi-2-level such, by setting η = η+a + (η−a)∗

and deriving the time evolution of this quantity. Adding Eq. (5e) with the complex conjugate of Eq. (5f), we
obtain

dη

dt
= −iΩcbη + i

q0d

2~
fw, (6)

where w = ρ++ − ρ−− denotes the inversion between the delocalized states, which evolves according to

dw

dt
= i

q0d

2~
f(η − η∗). (7)

We thus see that under the above idealized assumptions, we have reduced the three level system into an effective
two level such. In fact, this is a "quasi" two level system due to the presence of a factor of 2 in the denominator
of Eq. (7), which distinguishes it from the standard Bloch equations.[19]
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To see why Eqs. (6) and (7) could lead to a pulse switching behaviour we need to include the optical field prop-
agation equation into the model. For classical fields, absence of free electric charges and weak inhomogeneities,
the electric field envelope (within the slowly varying amplitude approximation) obeys the equation[15]

n0
c
∂tf + ∂xf = −iNΓq0dk0

ε0n20
(η+a + η−a), (8)

where ε0 is the permittivity of free space, N is the average carrier density per unit volume and Γ is the overlap
factor. Now, if we decompose the polarization envelopes, η+a and η−a into their real and imaginary parts, i.e.
η+a = u+ + iv+ and η−a = u− + iv−, and plug those into the propagation equation, we obtain that

n0
c
∂tf + ∂xf = −iNΓq0dk0

ε0n20
(u+ + u−) +

NΓq0dk0
ε0n20

(v+ + v−). (9)

The right hand side of Eq. (9) has a straightforward interpretation. While the real part of the polarization
contributes to frequency dependent change in the real part of the refractive index, i.e. dispersion, the imaginary
part captures the electric field loss/gain due to the resonant transition. On the other hand, from the quasi-2-level
system, Eq. (7), we see that the difference of the imaginary parts of the coherences, i.e. v+ − v− = ={η}, has
the same time evolution. This means that the high frequency transition’s (|+〉 ↔ |a〉) gain and low frequency
transition’s (|−〉 ↔ |a〉) loss form a co-propagating quasi-particle and vice versa. This intuitively explains how
the coherent time evolution of the quasi-2-level system would lead to a pulse switching behaviour, which has
already been observed by experiment[7] and also captured by our simulations.

4. CONCLUSION

We have discussed the appearance of a transient pulse switching phenomenon, named temporal hole burning, in
terahertz quantum cascade lasers with strong injector anticrossing, and showed that this effect is susceptible to
a very intuitive explanation within the framework of density matrix theory. The simplest possible system that
captures the THB effect is a three level system with one tunneling and one optical transition, the dynamics of
which is governed by the von Neumann equation. We have shown how under the right conditions, this three
level system can be reduced into a quasi-2-level such, modelling the time evolution of the anticrossed states.
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