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Hyperspectral imaging is a spectroscopic imaging technique that allows for the creation of images with pixels con-
taining information from multiple spectral bands. At terahertz wavelengths, it has emerged as a prominent tool for a
number of applications, ranging from nonionizing cancer diagnosis and pharmaceutical characterization to nonde-
structive artifact testing. Contemporary terahertz imaging systems typically rely on nonlinear optical downconversion
of a fiber-based near-infrared femtosecond laser, requiring complex optical systems. Here, we demonstrate hyperspec-
tral imaging with chip-scale frequency combs based on terahertz quantum cascade lasers. The dual combs are free-
running and emit coherent terahertz radiation that covers a bandwidth of 220 GHz at 3.4 THz with∼10 μW per line.
The combination of the fast acquisition rate of dual-comb spectroscopy with the monolithic design, scalability, and
chip-scale size of the combs is highly appealing for future imaging applications in biomedicine and the pharmaceutical
industry. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Optical imaging techniques have long been indispensable in the
natural sciences, with widespread adoption in the fields of biology,
astronomy, material science, and medicine. If merged with broad-
band spectroscopy, the traditional two-dimensional image is
expanded into its hyperspectral counterpart, where each pixel
represents a spectrum, transforming the image into a three-
dimensional hyperspectral data cube. The initial interest in this
field was predominantly driven by defense and astronomical ap-
plications, but the rapid advances in electronics and computing
during recent decades have precipitated widespread adoption of
hyperspectral imaging in diverse scientific areas, such as biomedi-
cine, agriculture, and environmental sensing [1–6].

Terahertz (THz) technologies have also experienced a similar
growth over the past decades [7–10], propelled in large part by the
significant advances in ultrafast lasers and nonlinear optics that
have transferred THz generation from bulky gas lasers [11] to
more user-friendly fiber-based femtosecond laser systems [12].
For noninvasive imaging [13–15], THz radiation exhibits a num-
ber of attractive properties, most notably the ability to propagate
through materials that are opaque at higher optical frequencies,
including fabrics, papers, and plastics. This property has driven
developments in nondestructive quality control and security

imaging to awareness beyond the scientific community. For
spectroscopic applications, the excitation of vibrational modes
at THz frequencies in many inorganic and organic compounds
is highly compelling, not only for chemical identification, but also
for discrimination based on the crystal lattice arrangement. In ad-
dition, the high sensitivity to water absorption together with the
nonionizing property of THz radiation makes this part of the
electromagnetic spectrum highly suitable for bioimaging applica-
tions, e.g., identification of different types of human tissue based
on their water content [16]. Another area of active THz imaging
development is the pharmaceutical field, where THz radiation can
be used to characterize tablet coating thicknesses [3,4], tablet
composition, and degradation of the active ingredients [17].

To date, the most commonly used THz spectroscopy systems
are based on interferometric or time-domain sampling tech-
niques, which enable wide spectral coverage with good sensitiv-
ities and robust operation, but with significant fundamental
limitations. The interferometric Fourier transform spectroscopy
(FTS) technique [18], originally developed for the visible and in-
frared spectral regions, offers unrivaled spectral coverage and ease
of use. Unfortunately, THz-FTS suffers from large footprint, low
brightness, and slow acquisition as a consequence of using a black-
body radiation source and an optomechanically scanned mirror.
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Nevertheless, the broad optical bandwidth and proven reliability
of THz-FTS ensures its use in sectors of far-infrared spectroscopy
and imaging where ample averaging is permitted.

THz time-domain spectroscopy (THz-TDS) usually relies on
electro-optical or photoconductive sampling to reconstruct the
electromagnetic field of a THz pulse, where the short pulse du-
rations of modern mode-locked fiber lasers make it inherently
broadband with good signal-to-noise ratio (SNR) in the 1–3 THz
range. However, just as in FTS systems, the time-domain sam-
pling typically relies on a mechanically scanned optical delay line,
which limits the acquisition speed and enlarges the system
footprint.

Over the last two decades, a novel approach to reconstructing
the optical spectrum of a repetitive pulse train has increasingly
gained popularity: the dual-comb spectroscopy (DCS) technique
[19,20]. In DCS, a second pulse generator with different repeti-
tion rate is used to asynchronously sample the pulse train of the
first, a process that results in a time-domain signal in the form of
an interferogram, analogous to that obtained in FTS. This scheme
eliminates the need for any optomechanical movement, which
enables high acquisition speeds (microseconds) and user-friendly
operation. Although most of this field primarily involves commer-
cially available fiber-laser-based optical frequency combs (OFCs)
operating in the near-infrared, its usefulness has also been dem-
onstrated in both the mid-infrared [21–24] and the THz [25]
using nonlinear media for frequency conversion. In 2012, a fun-
damentally different OFC was demonstrated in the mid-infrared,
the quantum cascade laser (QCL) OFC [26], which exploits the
nonlinearity of a low-dispersion, electrically pumped, semicon-
ductor gain medium to directly emit comb radiation around
an optical frequency defined via careful control of the layered
semiconductor growth. This first demonstration was shortly
followed by an extension to the THz domain [27], where the in-
trinsically large device dispersion was compensated by waveguide
engineering. Much of the strength of the QCL-OFCs lies in their
high optical power per mode, which can reach several milliwatts
in the mid-infrared [28] and tens of microwatts in the THz [29],
making spectroscopic assessments of highly absorbing media
possible. This is especially advantageous when considering spec-
troscopy of liquids or solids where a trade-off between the

gigahertz-range frequency resolution and the high optical power
per mode can be justified. Several examples of chip-scale semicon-
ductor laser-based DCS systems have been demonstrated in the
mid-infrared [30–33] and THz [29] with short-term peak SNRs
of more than 104∕
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s
p

[31,33].
Our proof-of-concept THz hyperspectral imaging system is

based on a pair of dispersion-compensated THz-QCL OFCs em-
ployed in the asymmetric dual-comb configuration. The system
achieves a spectral coverage of ∼220 GHz at a center wavelength
of 3.4 THz with more than 10 μW of optical power emitted
by each comb. A hyperspectral composite image of a pressed disc
consisting of α-D-glucose monohydrate (GMH), α-D-lactose
monohydrate (LMH), and L-histidine hydrochloride monohy-
drate (LHHM) is obtained via a raster scan of the sample.
This demonstration of hyperspectral imaging using electrically
pumped semiconductor laser frequency combs, fabricated using
scalable technology, opens possibilities of future compact hyper-
spectral imaging systems for applications in biomedicine, bio-
chemistry, and the pharmaceutical industry.

2. EXPERIMENTAL PROCEDURES

The system was designed as shown in Fig. 1(a), where two chip-
scale THz-QCL OFCs [see Fig. 1(b)] are arranged to emit anti-
parallel THz beams that are collimated using a combination of
silicon lenses and off-axis parabolic mirrors (see Supplement 1
for more details). The collimated THz light from one of the lasers,
the signal OFC, is focused onto the sample. The radiation trans-
mitted through the sample is recollimated and combined with the
light emitted from the local oscillator OFC using a silicon beam
splitter. The dual-comb light is focused onto a sensitive hot elec-
tron bolometer used as a square-law mixer with a 6 dB bandwidth
of 5 GHz. Due to the multiheterodyne mixing process of the op-
tical modes from both THz-QCL OFCs, the spectral information
from the THz frequency domain is imprinted in the radio-fre-
quency (rf ) modulation of the photocurrent, which can be con-
veniently digitized using an rf spectrum analyzer. The FTS spectra
obtained for the two OFCs are shown in Fig. 1(c), where 13 and
16 modes can be observed for the two combs, respectively, result-
ing in an instantaneous optical coverage of 220 GHz for the DCS
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Fig. 1. (a) Dual-comb hyperspectral imaging system. Two THz-QCL OFCs are aligned antiparallel, and their outputs are collected by two off-axis
parabolic gold-coated mirrors. The signal OFC is focused on a sample (solid disk) placed on an XYZ translation stage. The transmitted light is collected
and combined with the local oscillator comb on a hot electron bolometer with a bandwidth of 5 GHz. (b) Photo of the two chip-scale THz-QCLs
mounted on a copper submount; (c) optical mode spectra for the two THz combs centered at around 3.4 THz; (d) interferograms (IFGs) corresponding
to the spectra shown in (c), measured with a THz Fourier transform spectrometer (see Supplement 1); (e) and (f ) intermode beat notes from the two
THz-QCL OFCs. The center frequencies are 16.988 and 17.027 GHz for (e) and (f ), respectively.

Research Article Vol. 6, No. 6 / June 2019 / Optica 767

https://doi.org/10.6084/m9.figshare.8100971
https://doi.org/10.6084/m9.figshare.8100971


system. Figure 1(d) shows the FTS interferograms for the spectra
of Fig. 1(c). Figures 1(e) and 1(f ) show narrow and stable rf sig-
nals corresponding to the round-trip frequencies measured di-
rectly at the OFCs’ electrical terminals during operation,
which, in combination with broadband FTS spectra, is indicative
of comb operation.

3. RESULTS

DCS spectra recorded for a duration of 10 ms are shown in
Fig. 2(a), which indicates good signal-to-noise beat notes with
an average contrast of more than 20 dB. To estimate the fre-
quency resolution and visualize the behavior of the beat note
spectra when the optical modes are affected by optical absorption,
a tilted 525 μm silicon wafer is introduced into the beam
path, which gives rise to frequency-periodic etalon fringes. The
attenuated beat notes are displayed in red. Figure 2(b) shows
the corresponding transmission spectra, where the blue trace rep-
resents a clear beam path and the red trace the etalon transmission
(95% confidence intervals are indicated by the shaded areas).
Figures 2(c) and 2(d) show the corresponding measurements
for zero-gas and atmospheric water vapor (23% relative humidity)
using an acquisition time of 20 ms. These results, together with
the spectra of Figs. 1(c) and 1(e), are used for optical frequency
calibration of the system.

To evaluate the short-term precision and long-term stability of
the system, we performed an Allan deviation analysis [35] of the
relative multiheterodyne beat note amplitude stabilities. Rf beat
note spectra were recorded with a 100 ms time resolution for a
total acquisition time of 500 s. The results are shown in Fig. 3(a),
where the shaded area represents the range of precisions observed
for all multiheterodyne beat notes. The strongest beat notes with
SNRs (1σ) of ∼200∕

ffiffi

s
p

result in proportionally better precisions
as compared to the weaker ones with SNRs of ∼140∕

ffiffi

s
p

. A drift
appears after ∼20 s of averaging, which is mainly attributed to

mechanical vibrations induced by the cryopump. Figures 3(b)
and 3(c) show the histograms of transmission values used for
the analysis in Fig. 3(a).

Powdered samples of two common pharmaceutical excipients
and an amino acid were pressed to a solid disk in order to dem-
onstrate the hyperspectral imaging capabilities of the system. The
disk comprised three zones, with a 10% mass concentration of
α-D-GMH, α-D-LMH, and LHHM powder (Sigma-Aldrich,

Frequency [GHz]
A

m
pl

itu
de

 [µ
V

]

4.9 5 5.25.1 5.3

1

0.5

Frequency [THz]
3.3 3.35 3.4 3.45

0

T
ra

ns
m

is
si

on

50

100

(a)

Si-wafer

no Si-wafer

Si-wafer

no Si-wafer

2σ

A
m

pl
itu

de
 [µ

V
]

T
ra

ns
m

is
si

on

1

0.5

0
3.1 3.2 3.3 3.4 3.5 3.6

4.7 4.8 54.9 5.1
Frequency [GHz]

10

0

Water vapor

Zero-gas

Water vapor

HITRAN 2016 database 2σ

Frequency [THz]

(b)

(c)

(d)
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cleared beam path (blue), and the etalon structure originating from the 525 μm Si wafer is shown in red. The shaded areas correspond to a 95% confidence
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99%) diluted in spectroscopic grade polyethylene and was pressed
using 5 tons of pressure. The disk was placed in a sample holder
with XYZ-translation capability, and the sample was raster-
scanned across the focus of the THz beam with a step size of
0.5 mm, resulting in a 81 × 53 pixel THz image acquired as a
three-dimensional hyperspectral data cube using simultaneously
acquired dual-comb spectra. The acquisition time was limited by
the movement of the translation stage and the data transfer speed
to approximately 0.3 s per pixel, resulting in a total acquisition
time of 21 min for the hyperspectral image shown in Fig. 4(b).
By upgrading the slow translation stage to faster raster-scan hard-
ware, similar images could potentially be obtained on the subsec-
ond time scale. Simple Gaussian smoothening and contrast
enhancing sigmoid transformation was used to obtain the hyper-
spectral slices shown in Fig. 4(a) (see Supplement 1). Images la-
beled R, G, and B show selected hyperspectral slices where the
different spectral signatures of the material absorption shown
in Fig. 4(c) were assigned high-contrast false colors. Two zones
stand out due to distinct spectral trends in material absorption,
whereas the third zone, as a result of a nearly featureless absorp-
tion spectrum in this spectral region, show less contrast. The
RGB composite image of Fig. 4(b) is obtained by combining
the R, G, and B log-transmission slices (see Supplement 1) of
Fig. 4(a), measured at 3.30, 3.35, and 3.45 THz, respectively.
The three zones with different compounds are clearly identifiable
in the composite image. The bottom-left zone with GMH ap-
pears as red in the transmission image due to a monotonically
increasing absorption with frequency, as opposed to the bot-
tom-right purple zone of LMH, which has the lowest attenuation
in the blue (high-frequency) channel, and the strongest in green.
Finally, the top LHHM zone appears as orange-white since it is
the most transparent of all, with slightly increased absorption in
the blue channel. To demonstrate the resolution capabilities of
the system, a reflective intensity image with ∼12000 pixels of
a U.S. quarter was acquired [see Fig. 4(d)]. The inset shows a
finer scan of the details of the feathers on the eagle’s wing with
<200 μm resolution.

4. CONCLUSION

In conclusion, we have experimentally demonstrated a hyperspec-
tral imaging system using dual chip-scale semiconductor laser

frequency combs, all while operating in the challenging THz
spectral region. An 81 × 53-pixel hyperspectral image was ac-
quired through a raster scan of a solid pressed disk containing
three differently absorbing compounds: α-D-GMH, α-D-LMH,
and LHHM. The THz sources operate at a center frequency
of 3.4 THz and span approximately 220 GHz with an optical
power of ∼10 μW per mode, which is more than typically
achieved with FTS or time-domain spectroscopy at this wave-
length. The acquisition speed of the instrument is currently lim-
ited by the slow mechanical raster scan, but assessments of the
short-term precision of the system indicate that percentage-level
fractional absorption could be obtained on the subsecond time
scale with faster scanning.

The ultimate spectral resolution of the system could theoreti-
cally reach <100 kHz levels as indicated by the intermode beat
note linewidths shown in Figs. 1(e) and 1(f ). However, this level
of spectral resolution would require intricate frequency stabiliza-
tion techniques in combination with precise laser frequency con-
trol. The nominal spectral resolution of the dual-comb system
with free-running lasers is at the megahertz level, given by the
linewidth of the multiheterodyne beat notes, but this resolution
can only be exploited through step-scan spectral interleaving or
continuous frequency tuning. However, in the case of solid sam-
ples with broad spectral features, the spectral sampling resolution
given by the mode spacing is often sufficient for species identi-
fication. Despite the limited spectral coverage (220 GHz) and
moderate frequency resolution (∼17 GHz), our proof-of-concept
system is capable of correctly identifying the tested solids based on
their spectral differences in absorbance, but THz frequency comb
devices with broader optical coverage are needed for a more quan-
titative assessment of the samples.

Future developments of the combs are expected to further
increase the optical power and address the aforementioned lim-
itations in spectral coverage [38]. Already, octave-spanning multi-
mode THz-QCLs have been demonstrated [39], and continuing
efforts to manage the dispersion of these devices are likely to result
in similar optical bandwidths for comb operation. In addition, a
reduction in the duty cycle of the combs through pulsed opera-
tion can be used to increase the operating temperature, albeit with
an accompanied loss in sensitivity [29]. Even so, pulsed mode
operation of the THz-QCLs combined with multiheterodyne
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downconversion via room-temperature Schottky mixers is likely
the most viable path towards practical applications, e.g., in bio-
imaging or pharmaceutical quality control.
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