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Abstract: A full demonstration of the Fourier phase grating used as 4.7 THz local oscillator (LO)
multiplexer for Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory (GUSTO)
is presented in this paper, including its design, modeling, tolerance analysis, and experimental
characterizations of the angular and intensity distributions among 2 × 4 output beams and
the power efficiency. A quantum cascade laser (QCL) is used to generate the input beam for
evaluation of the grating performance in its all relevant aspects with an accuracy level never
reported before, where good agreements with modeling results are found. This is the first
asymmetric-profile grating fully modelled and characterized at a THz frequency, that further
confirms the versatility of this technology for providing an intermediate optical element for
feeding multiple array detectors with a single radiation source at such a scientifically interesting
frequency regime.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory (GUSTO) is a NASA sup-
ported balloon borne astronomical observatory for studying the life-cycle in the interstellar
medium and beyond. It will detect the transition lines of nitrogen, carbon and oxygen at frequen-
cies of 1.4, 1.9 and 4.7 THz (called bands 1, 2 and 3 respectively). High spectral resolution
spectroscopy is provided by the heterodyne detection technique that is employed for all three
frequency bands. In this technique the THz celestial signal is down-converted to GHz range when
it is mixed with a locally generated signal (LO). This is done by the state-of-the-art sensitive
superconducting hot electron bolometer (HEB) mixers in GUSTO. Each band has an array of 8
(2 × 4) mixers for increasing the mapping speed and the observing efficiency. These arrays at two
lower frequency bands i.e. 1.4 and 1.9 THz are optically pumped with LOs generated by an array
of frequency multiplied sources [1]. However, this technology is not yet available at 4.7 THz
because of the upscaled machining difficulties for shorter wavelengths. At such a high frequency
QCLs [2] are the only LO-applicable radiation source, the outcome of more than two decades of
efforts on improving both their gain medium [3], where the optical inter-subband transitions of
electrons happen and their waveguide structure to couple their radiation to the free space [4].
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In GUSTO’s band-3 a unidirectional 3’rd order distributed feedback (DFB) QCL [5] will be
used as the LO. The radiation from such a QCL is directed through an optical system for properly
coupling to the array’s 8 mixers equidistantly distributed in a 2 × 4 rectangular pattern. The latter
can be done in the most efficient way using a Fourier phase grating not only for this frequency
range [6,7] but also at lower THz frequencies [8]. In this paper we report the demonstration
of such a 4.7 THz phase grating as the LO multiplexer with an unprecedented asymmetric
profile, which allows for meeting the specific requirement of the 8 beams of GUSTO. We also
apply a novel high power QCL source at 4.7 THz, which in combination with our experimental
arrangement allows for the characterization of the angular distribution of the output beams, the
efficiency and the power uniformity in a high accuracy. Both the idea to use an asymmetric
grating profile at such a high frequency and the accurate experimental characterization have never
been reported in the literature before.

2. Phase grating design

A phase grating is formed by repetition of a unit-cell, which is engineered to diffract the input
beam into required directions or modes. While the surface topology of the unit-cell determines
the power distribution among different diffraction modes, its size determines the angular distances
between them. The design of the LO coupling optical system of GUSTO’s band-3 requires a
reflective grating to multiplex an Gaussian-like incoming beam of 2.95 mm radius with 15 ° angle
of incidence to 8 (2 × 4) beams with equal angular distances of 1.83 °. The angles of incidence
(α) and mth diffraction order (β) are related to each other through a basic formula i.e. sin β= sin
α+mλ/Λ, where λ is the wavelength, m is the diffraction order and Λ is the grating periodicity.
The latter is the same as the unit-cell size. The conventional way of symmetric designation of
diffraction orders (± 1, 2, . . . ) requires a unit-cell size of more than 4 mm. Considering the fact
that for the grating to function at least 2 unit-cells should be illuminated, a symmetric structure
is not applicable since the input beam diameter is ∼ 6mm. The only way to accommodate the
required function is then applying the asymmetrically distributed consecutive orders [9]. For
this we chose the orders (0,+1) and (−2,−1,0,+1) for the beam to be multiplexed in orthogonal
directions. This is the first time that the asymmetric approach is taken for beam multiplexing at
THz.

We use MATLAB to generate the grating surface profile with the same method as described
in [10]. However, in order to derive an asymmetric profile we apply both sine and cosine
components in the expansion of the phase modulation function, where for each of which, we
calculate 5 Fourier coefficients. COMSOL is then used to characterize the performance of the
grating, when it is illuminated with a Gaussian beam at its waist with 15 ° incidence angle. The
designed surface topology of a unit-cell is shown in Fig. 1(a) in 3D, where its asymmetric feature
can be seen. The cross-section 2D profiles in orthogonal directions are also shown in this figure
(b) and (c), where one multiplexes the beam by 2 and the other by 4. The grating surface is made
by superimposing these two profiles over a certain rectangular area, whose side-lengths define
the angular separation of the output beams in both directions. The arrow schematics help to
understand how the incident beam illuminates the grating and the output beams are diffracted
from.

The angular distances between the output beams should be considered altogether when the
side-lengths of a grating unit-cell is being determined, for which the abovementioned formula is
not fully applicable since the incoming beam is simultaneously multiplexed by two superimposed
profiles. Here we use COMSOL to derive the optimized side-lengths for having the closest
angular distances to 1.83°, where we find the lengths of 2.057 mm and 2.048 mm for the 1
× 2 and 1 × 4 multiplexing profiles, respectively. The resulted angular pattern is shown in
Fig. 2, in which all the angular distances amongst the beams (with similar colors as to Fig. 1)
in X and Y directions are given. Moreover, the distances from the normal in the X direction
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Fig. 1. 3D topology of the grating surface (a), and its 2D cross-section profiles (b, c). Arrow
schematics show the incident beam and the diffracted beams in corresponding coordinates to
their adjacent profiles.

(incident beam plain) are given for the first row beams on their bottoms, which is 15 ° for the (0,0)
diffraction order (30 ° from the incident beam) and different for the others. These angles give
a clear imagination of the beam’s distribution scheme. We show an exaggerated view of such
distribution on the right side of this figure to help reader’s perception, which indicates that the
(0,0) order is a flat mirror image of the incident beam flowing in the same plane (0 ° distance in
Y direction) with the same distance from the normal (15 °). The maximum deviation occurs for
the beam on the top right corner, which is 0.033 ° and 0.036 ° in X and Y directions respectively.

The designed surface topology is expected to provide an efficiency of ∼ 70%, which is the
ratio between the summed power over the targeted diffraction orders to the power of the incoming
beam. The other important characteristic is the uniformity in the power distribution among
the output beams. This is important for an array of similar mixers, DC-biased on the same
optimal operating point. If the LO coupling deviates from the optimum for any of mixers its
heterodyne sensitivity degrades accordingly. For this grating we expect a non-uniformity of
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Fig. 2. Angular distribution of the output beams. Angular distances are written on the
arrows between the beams. The angles to the normal in X direction (incident beam plain)
are quoted for the first row beams on their bottoms. A distribution view with exaggerated
angular deviations is given on the right side.

13% defined as the (Pmax-Pmin)/Paverage, where Pmax and Pmin are the maximum and minimum
powers respectively, and Paverage is the averaged distributed power among all the output beams.
The detailed power distribution scheme would be later shown and compared to the measurement
results in this paper. To estimate the effect of such non-uniformity on the sensitivity of the mixer
array we use a set of experimental I-V curves measured for an HEB with different levels of the LO
pumping powers [11]. We find that the averaged addition to the receiver noise temperature (TN)
is 1.5% if the designed grating is applied. The reason for averaging is that in the observation each
point in sky is scanned by all the array pixels and the final result is the average of the individual
ones. The latter defines the averaged array sensitivity.

3. Manufactured grating and surface deviation analysis

The acquired grating surface, which is machined on an aluminum block by micro-milling, has
random deviations from the design not in a systematic way, whose influence is difficult to derive
by modelling. However, in order to understand the order of the effect of a profile deviation on
the grating performance we apply surface modifications to our design by adding a 1 mm period
sine-surface with different amplitudes to the grating profile. Figure 3 shows the added surface
and the grating profile. We think this approach covers the deviation caused by machining. i.e. it
gives bigger effects than the actual derived profile and therefore can be taken as a measure for the
surface tolerance.

We find that the application of such surface perturbations causes negligible change in the
grating efficiency. However, it degrades the uniformity of the power distribution and consequently
the receiver sensitivity as explained in the previous section. Results are summarized in Table 1
for different amplitudes of the added sine-wave surface.

The grating is manufactured at Arizona State University using a CNC micro-milling machine.
It has 12 by 12 unit-cells covering a surface area of ∼ 25 mm2. An optical micrograph of two
unit-cells of the manufactured grating together with a simulated image of the same area projected
with a similar light are shown in Fig. 4(a) and (b) respectively. Since the surface of the grating has
a large minimum radius of curvature (∼ 1.4 mm) or in other words shallow features distributed
over long lengths it is difficult to show its fine structures clearly by imaging. However, one can
see the main surface height transitions followed by the shadows on this figure. To better address
the imaged area a larger simulated surface with highly magnified structures is shown in c, where
the plane is slightly rotated around the Y axis for a better 3D representation, and the imaged area
is indicated by a white rectangle.

The height data of the machined surface is acquired using a 3D microscope and compared to
the designed profile, where deviations less than 1 µm are found. The design and manufactured
cross-section profiles of a unit-cell in orthogonal directions are shown in Fig. 5 together with
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Fig. 3. The added sine-wave surface (1 µm amplitude) to the grating profile for estimation
of the effect of the machining imperfections on the grating performance.

Table 1. Consequences of the Grating Surface Deviationa

Amplitude Non -uniformity Averaged addition to TN

1 µm 25% 5%

0.7 µm 21% 4%

0.6 µm 19% 3.5%

0.5 µm 17% 3%

0.4 µm 15% 2.5%

0.2 µm 14% 2%

Ideal 13% NA

aThe non-uniformities and averaged additions to the receiver noise tem-
perature (TN), when 1 mm period sine-wave perturbations with different
amplitudes are applied to the grating profile.
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Fig. 4. (a), (b) Optical micrograph of two unit cells of the manufactured grating on an
aluminum block and simulated image of the same area with a similar light projection,
respectively. The coordinate system corresponds to the one used in Fig. 1. (c) simulated
image of a larger surface, where the features are highly magnified and the plane is slightly
rotated around the Y axis to give the reader a clear perception of the imaged area indicated
by the white rectangle.

their height differences or deviations. With this we expect a reduction in the averaged array
sensitivity by less than 5% (Table 1).

Fig. 5. Designed and measured cross-section profiles of the grating in orthogonal directions
and their deviations.

4. Measurement setup and results

4.1. 4.7 THz radiation source

We use a unidirectional 4.7 THz QCL [5] developed by MIT with an exceptional high output
power for characterization of the manufactured grating. The QCL chip on a Cu plate is shown
in the inset of the Fig. 6(a). We mount it in a pulse-tube cryo-cooler, where the THz radiation
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transmits through an UHMW-HDPE window. We scan the raw beam pattern of this laser at a
distance of ∼ 50 mm using a pyro-electric detector mounted on a 2D translational stage. The
acquired beam is shown in Fig. 6(b). The orientation relation between the laser chip and the
scanned beam pattern is indicated using a common coordinate system shown on both in Fig. 6.
We also measure its spectrum using a Fourier transform spectrometer and the result is shown in
Fig. 6(a), where its single-mode feature peaking at ∼ 4.715 THz can be seen. This frequency is
slightly lower (0.6%) than the one the grating is designed for i.e. 4.745 THz, that causes negligible
effect on the grating performance. The output power of this laser is ∼ 5 mW, determined using a
Thomas Keating power meter.

Fig. 6. (a) Single-emission mode spectrum of the used QCL, where the line-width is limited
by the resolution of the Fourier transform spectrometer. The inset is a photo of the QCL
chip on a Cu plate. (b) The beam pattern scanned at a distance of ∼ 50 mm from the laser
chip. The coordinates on both sides are to indicate the orientation relation between the laser
chip and the beam pattern.

4.2. Measurement setup

As mentioned before, we scan the beams using a pyro-electric detector mounted on a 2D
translational stage. We mount the translational stage on a robust rail-slider to be able to move the
stage back and forth (in the Z direction, normal to the scanning plane, X-Y). We need this to finely
identify the beam traveling direction since the angular accuracy is crucial in this measurement.
We find the uncertainty of the detector position on the scanning plane caused by the rail-slider
to be less than± 15 µm, by several scanning-sliding-scanning rounds of the beam on the same
plane. This leaves a negligible uncertainty in the angle measurements since the distances that we
take between our scanning planes are in the order of couple of centimeters.

The first step of the experiment is preparing a suitable input beam with a right incident angle to
the grating. Since the output beams would have small angular distances from each other, in order
to have them resolved in a reasonable distance from the grating, a highly collimated beam with a
small size should be made as the input. To do so we use a 60 mm focal length HDPE lens to
collimate the QCL beam, which undergoes spatial filtering by two 6 mm diameter iris apertures
before and after the lens. There is a tilt adjustable flat mirror between the lens and the aperture 2
for vertically straightening the beam direction. A schematic of the setup is shown in Fig. 7.

We scan the beam in several planes with different distances from the aperture 2 until we see a
consistent beam shape. There would be in the far-field regime, where the beam is in its final form
and we can keep track of it to identify its traveling direction. We find this range starting at ∼ 20
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Fig. 7. The optical setup for providing the input beam to the grating

cm away from the aperture 2. In this range we keep scanning the beam in 3 different planes with
a 40 mm interval, while optimizing our sliding direction (Z) until we find the scanned beams
straight along the rail. Thereafter, we mark the rail direction as the direction of the input beam,
based on which the grating angle should adjusted.

To position the grating with a correct angle with respect to the incident beam (15 °) we take
advantage of the (0,0) diffraction order mode, which reflects off the grating similar to a flat
mirror. With this we expect to have 30 ° distance between the incident beam and the (0,0) mode.
Therefore, before placing the grating we make an angle of 30 ° to the recorded direction of the
incident beam. The rail-slider then is placed in parallel to the latter. Here we scan and find the
(0,0) mode and then optimize the grating angle till we see this mode travelling along the rail
direction. In this step the setup is completed and the output beams can be measured. For each
step of finding and recording the traveling direction we assume an error of 0.1 ° leading to a total
of 0.3 ° (3 steps: finding the incident angle, adding 30 ° distance to it, and positioning the rail)
uncertainty in the incident angle. This causes a negligible difference in the angular separation of
the beams (< 0.01 °). By performing COMSOL simulation we find less than 1% effect on the
grating efficiency and a maximum addition of 1.5% to the power distribution non-uniformity
(ideally, 13%) caused by such uncertainty.

4.3. Results

We place the grating at a distance of ∼ 22 cm from the aperture 2 and scan the output beams at a
distance of ∼ 34 cm from the grating. We observe 8 diffracted beams in the expected distribution.
However, the shape of each beam does not resemble the incident beam. We explain this issue as
follows. The input beam to the grating has an 8 mm diameter with tails extended to the edge of
the grating active surface, which causes truncation and consequently the appearance of side-lobes
around all the beams in the far-field diffraction pattern. The side-lobes of each diffracted beam
can then interfere with its adjacent beams and their side-lobes and vice-versa, that lead to changes
in their shapes. Although we cannot use this output for calculation of the grating efficiency and
power uniformity we can still use it to determine the angular distances between the beams since
this issue does not influence their travelling direction.

We measure the direction of each beam individually by scanning it at three different planes.
We first fit the scanned beams to Gaussian distributions and then linear-least-squares fit the three
acquired Gaussian center points to obtain the beam direction. The results of such measurements
are shown in Fig. 8(b) besides the expected angular distances from modelling in Fig. 8(a). There
the beams are numbered for easier tracking in the text, where the (0,0) order mode is indicated
with number 3. The top and bottom numbers written on each arrow are the horizontal and vertical
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angles between the beams at its two ends respectively. We quote uncertainties inside prentices
caused by three major contributors i.e. the unlocking-sliding-locking of the stage mounted on the
rail-slider and the standard errors in the Gaussian and linear-least-squares fits. Figure 8 shows
that the deviations of the measurement results from the model are well within our error bars. In
other words we conclude that the grating functions similar to what we expect in the sense of the
angular pattern in the level of accuracy we can achieve.

Fig. 8. The expected (a) and measured (b) angular distances between the beams. The top
and bottom numbers on the arrows are the horizontal and vertical distances between its two
end beams respectively. In prentices are the total uncertainties caused as explained in the
text.

To be able to find the grating efficiency and power distribution uniformity we further open
the aperture 2 and move the grating closer to it (∼ 10 cm away). In this way we are able to scan
the diffracted beams close to their wastes, where they are smaller and better separated. This
decreases the chance of interference with the side-lobes of the adjacent beams as well. Moreover,
we shorten the optical path and increase the signal-to-noise ratio. We scan the beams at ∼ 34 cm
after the grating with a pattern shown in Fig. 9(a), where the (0,0) order mode is indicated. The
Fig. 9(b) is the incident beam scanned on the same plane when the grating is replaced with a
flat mirror. We find this pattern reasonable, in which the incoming beam is nearly duplicated to
the diffracted beams with little differences, which are attributed again to the contribution of the
side-lobes.

To derive the power distribution we do the integration of the intensity for each measured beam.
Figure 10 shows the (normalized) measured intensity for each beam at the QCL frequency together
with what is expected form modelling at both the QCL frequency and the target frequency, for
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Fig. 9. (a) The scanned output beam pattern. (b) The incident beam scanned in the same
plane when the grating is replaced with a flat mirror

which the grating is designed. Although these plots do not fully follow each other they still show
similar non-uniformity levels of ∼ 13%. The lack of the one-to-one matching can be attributed to
a couple of factors e.g. manufacturing imperfections and measurement uncertainties. We also
looked at the possible effect of the different angles of each beam with respect to the scanning
plane (the detector) on the derived integrated power. To do so, in a separate experiment we
compare the integrated intensities of a beam in two cases, when it is perpendicular to the scanning
plane and when it has a 4 ° angle, where we find a negligible difference. 4 ° is larger than the
maximum difference in the angle to the scanning plane between the beams i.e. 2 × 1.83 °.

We derive an efficiency of 69% with an uncertainty of about± 5% by taking the ratio between
the sum of the integrated intensities of the main output beams and the one for the input beam
scanned at the same plane as the output after replacing the grating with a flat mirror. This is
the same efficiency as we expect from modelling. The uncertainty is due to the fact that the
main output beams and the higher order modes are not well separated, which generates errors in
defining the right integration area.

Having achieved important measurement results i.e. the angular pointing of the output beams,
the efficiency, and the power uniformity to be in a good agreement with those from the design,
our phase grating meets the requirements of GUSTO.
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Fig. 10. The intensity distribution among the beams, which are numbered similar to Fig. 8.
Three curves are plotted for the modelling results at the design (4.745 THz) and measurement
(4.715 THz) frequencies, and for the measurement results. The distribution variations are
noted in the figure.

5. Conclusions

We present a 4.7 THz asymmetric-profile Fourier phase grating for GUSTO as a 1 to 8 LO
multiplexer. We designed, manufactured and experimentally tested this device. We have
characterized the power distribution and efficiency at 4.7 THz using a quantum cascade laser as
the input source. In particular, we characterize the angular distribution of 8 diffracted beams,
where we find it following our design values within our measurement uncertainty of below 0.4 °.
Such angular characterization with so high accuracy has never been reported before for these
devices. Furthermore, the surface tolerance and its effects on the output beams uniformity and
consequently the array sensitivity are also studied. We believe that this is the first demonstration
of an asymmetric grating at a THz frequency. The presented phase grating that meets the criteria
is now successfully integrated in the band-3 array receiver of GUSTO, which is scheduled to
launch in December 2021 from Antarctica.
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